# Majority Judgment: Why use it to rank and elect 

Rida Laraki<br>CNRS (Lamsade, Dauphine)<br>and University of Liverpool (Computer Science)

## Laboratoire d'Informatique de Grenoble Keynote Speech

Grenoble, October 4, 2018
(Joint work with Michel Balinski)
(1) Paradoxes

- Methods of Voting
- Paradoxes in Theory
- Paradoxes in Practice
(2) Impossbilities
- May's Axioms for Two Candidates
- Arrow's Impossibility TheoremMajority Judgment
- From Practice
- Small Jury
- Large ElectorateTheory
- Domination Paradox
- Possibility
- Manipulation

Paradoxes Impossbilities Majority Judgment Theory Methods of Voting Paradoxes in Theory Paradoxes in Practice 2017 French presidential election

## 2017 French presidential election

|  | 1st Round |  |  |  | 2nd Round |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | \% | \% |  | \% | \% |
|  |  | Number | Regis. | Voters | Number | Regis. | Voters |
| Regis. |  | 582183 |  |  | 47568693 |  |  |
| Absten. | 10 | 578455 | 22.23\% |  | 12101366 | 25.44\% |  |
| Voters | 37 | 003728 | 77.77\% |  | 35467327 | 74.56\% |  |
| Blank |  | 659997 | 1.39\% | 1.78\% | 3021499 | 6.35\% | 8.52\% |
| Inval. |  | 289337 | 0.61\% | 0.78\% | 1064225 | 2.24\% | 3.00\% |
| Votes | 36 | 054394 | 75.77\% | 97.43\% | 31381603 | 65.97\% | 88.48\% |

## 2017 French presidential election

|  | 1st Round |  |  | 2nd Round |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number |  |  | Number |  |  |
| Regis. | 47582183 |  |  | 47568693 |  |  |
| Absten. | 10578455 | 22.23\% |  | 12101366 | 25.44\% |  |
| Voters | 37003728 | 77.77\% |  | 35467327 | 74.56\% |  |
| Blank | 659997 | 1.39\% | 1.78\% | 3021499 | 6.35\% | 8.52\% |
| Inval. | 289337 | 0.61\% | 0.78\% | 1064225 | 2.24\% | 3.00\% |
| Votes | 36054394 | 75.77\% | 97.43\% | 31381603 | 65.97\% | 88.48\% |

2nd round compared with 1st round:

## 2017 French presidential election

|  | 1st Round |  |  |  | 2nd Round |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Number |  |  | Number |  | $\%$ |
| Regis. |  | 582183 |  |  | 47568693 |  |  |
| Absten. | 10 | 578455 | 22.23\% |  | 12101366 | 25.44\% |  |
| Voters | 37 | 003728 | 77.77\% |  | 35467327 | 74.56\% |  |
| Blank |  | 659997 | 1.39\% | 1.78\% | 3021499 | 6.35\% | 8.52\% |
| Inval. |  | 289337 | 0.61\% | 0.78\% | 1064225 | 2.24\% | 3.00\% |
| Votes | 36 | 054394 | 75.77\% | 97.43\% | 31381603 | 65.97\% | 88.48\% |

2nd round compared with 1st round:
1.5 million fewer voters, 5 times as many blank ballots, 4 times as many invalid ballots. Almost 5 million fewer valid votes. Why?

## 2017 French presidential election

|  | 1st Round |  |  | 2nd Round |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \% | \% |  | \% | \% |
|  | Number | Regis. | Voters | Number | Regis. | Voters |
| Regis. | 47582183 |  |  | 47568693 |  |  |
| Absten. | 10578455 | 22.23\% |  | 12101366 | 25.44\% |  |
| Voters | 37003728 | 77.77\% |  | 35467327 | 74.56\% |  |
| Blank | 659997 | 1.39\% | 1.78\% | 3021499 | 6.35\% | 8.52\% |
| Inval. | 289337 | 0.61\% | 0.78\% | 1064225 | 2.24\% | 3.00\% |
| Votes | 36054394 | 75.77\% | 97.43\% | 31381603 | 65.97\% | 88.48\% |

2nd round compared with 1st round:
1.5 million fewer voters, 5 times as many blank ballots, 4 times as many invalid ballots. Almost 5 million fewer valid votes. Why?

Voters could not express their opinions:

## 2017 French presidential election

|  | 1st Round |  |  | 2nd Round |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \% | \% |  | \% | \% |
|  | Number | Regis. | Voters | Number | Regis. | Voters |
| Regis. | 47582183 |  |  | 47568693 |  |  |
| Absten. | 10578455 | 22.23\% |  | 12101366 | 25.44\% |  |
| Voters | 37003728 | 77.77\% |  | 35467327 | 74.56\% |  |
| Blank | 659997 | 1.39\% | 1.78\% | 3021499 | 6.35\% | 8.52\% |
| Inval. | 289337 | 0.61\% | 0.78\% | 1064225 | 2.24\% | 3.00\% |
| Votes | 36054394 | 75.77\% | 97.43\% | 31381603 | 65.97\% | 88.48\% |

2nd round compared with 1st round:
1.5 million fewer voters, 5 times as many blank ballots, 4 times as many invalid ballots. Almost 5 million fewer valid votes. Why?

Voters could not express their opinions:

- They refused to be counted as supporting either candidate, either program.


## 2017 French presidential election

Regis.
Absten.
Voters
Blank
Inval.
Votes

| 1st Round |  |  | 2nd Round |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | \% | \% |  | \% | \% |
| Number | Regis. | Voters | Number | Regis. | Voters |
| 47582183 |  |  | 47568693 |  |  |
| 10578455 | 22.23\% |  | 12101366 | 25.44\% |  |
| 37003728 | 77.77\% |  | 35467327 | 74.56\% |  |
| 659997 | 1.39\% | 1.78\% | 3021499 | 6.35\% | 8.52\% |
| 289337 | 0.61\% | 0.78\% | 1064225 | 2.24\% | 3.00\% |
| 36054394 | 75.77\% | 97.43\% | 31381603 | 65.97\% | 88.48\% |

2nd round compared with 1st round:
1.5 million fewer voters, 5 times as many blank ballots, 4 times as many invalid ballots. Almost 5 million fewer valid votes. Why?

## Voters could not express their opinions:

- They refused to be counted as supporting either candidate, either program.
- Yet they may see a difference between Macron and Le Pen.

Paradoxes Impossbilities Majority Judgment Theory Methods of Voting Paradoxes in Theory Paradoxes in Practice What is an election?

## Elections measure.

## Elections measure.

Voters express themselves somehow, a rule amalgamates the expressions into candidates' measures that determine the order of finish.

## Elections measure.

Voters express themselves somehow, a rule amalgamates the expressions into candidates' measures that determine the order of finish.

As Walter Lippmann observed in 1925, actual methods measure badly:
"But what in fact is an election? We call it an expression of the popular will. But is it? We go into a polling booth and mark a cross on a piece of paper for one of two, or perhaps three or four names. Have we expressed our thoughts ... ? Presumably we have a number of thoughts on this and that with many buts and ifs and ors. Surely the cross on a piece of paper does not express them.... [C]alling a vote the expression of our mind is an empty fiction."

## What is an election?

## Elections measure.

Voters express themselves somehow, a rule amalgamates the expressions into candidates' measures that determine the order of finish.

As Walter Lippmann observed in 1925, actual methods measure badly:
"But what in fact is an election? We call it an expression of the popular will. But is it? We go into a polling booth and mark a cross on a piece of paper for one of two, or perhaps three or four names. Have we expressed our thoughts ... ? Presumably we have a number of thoughts on this and that with many buts and ifs and ors. Surely the cross on a piece of paper does not express them... . [C]alling a vote the expression of our mind is an empty fiction."

## Main messages of this presentation:

1) A bad measure of opinions induce paradoxical results in theory and practice.
2) By allowing better expressions of opinions, we can solve the problems.

Paradoxes Impossbilities Majority Judgment Theory Methods of Voting Paradoxes in Theory Paradoxes in Practice UK's, USA's, France's Voting Methods

## UK's, USA's, France's Voting Methods

First-past-the-post: also called plurality voting, used in UK, US and Canada to elect members of house of representatives.

## UK's, USA's, France's Voting Methods

First-past-the-post: also called plurality voting, used in UK, US and Canada to elect members of house of representatives.

A voter designate one candidate. The most designated wins.

## UK's, USA's, France's Voting Methods

First-past-the-post: also called plurality voting, used in UK, US and Canada to elect members of house of representatives.

A voter designate one candidate. The most designated wins.
The question implicitly asked is: which candidate do you like best?

## UK's, USA's, France's Voting Methods

First-past-the-post: also called plurality voting, used in UK, US and Canada to elect members of house of representatives.

A voter designate one candidate. The most designated wins.
The question implicitly asked is: which candidate do you like best?
Two-past-the-post: used in France and several countries (Finland, Austria, Russia, Portugal, Ukraine, etc) to elect the president.

## UK's, USA's, France's Voting Methods

First-past-the-post: also called plurality voting, used in UK, US and Canada to elect members of house of representatives.

A voter designate one candidate. The most designated wins.
The question implicitly asked is: which candidate do you like best?
Two-past-the-post: used in France and several countries (Finland, Austria, Russia, Portugal, Ukraine, etc) to elect the president.

A voter designates one candidate. If a candidate is designated by a majority, he is elected. Otherwise, there is a run-off between the two first candidates.

First-past-the-post: also called plurality voting, used in UK, US and Canada to elect members of house of representatives.

A voter designate one candidate. The most designated wins.
The question implicitly asked is: which candidate do you like best?
Two-past-the-post: used in France and several countries (Finland, Austria, Russia, Portugal, Ukraine, etc) to elect the president.

A voter designates one candidate. If a candidate is designated by a majority, he is elected. Otherwise, there is a run-off between the two first candidates.

Approval Voting: used in many scientific societies, was formally introduced by Robert Weber in 1977, and has been practiced in the Sparta of antique Greece.

First-past-the-post: also called plurality voting, used in UK, US and Canada to elect members of house of representatives.

A voter designate one candidate. The most designated wins.
The question implicitly asked is: which candidate do you like best?
Two-past-the-post: used in France and several countries (Finland, Austria, Russia, Portugal, Ukraine, etc) to elect the president.

A voter designates one candidate. If a candidate is designated by a majority, he is elected. Otherwise, there is a run-off between the two first candidates.

Approval Voting: used in many scientific societies, was formally introduced by Robert Weber in 1977, and has been practiced in the Sparta of antique Greece.

The voter may designate as many candidates as he wishes. The candidate most designated wins.

First-past-the-post: also called plurality voting, used in UK, US and Canada to elect members of house of representatives.

A voter designate one candidate. The most designated wins.
The question implicitly asked is: which candidate do you like best?
Two-past-the-post: used in France and several countries (Finland, Austria, Russia, Portugal, Ukraine, etc) to elect the president.

A voter designates one candidate. If a candidate is designated by a majority, he is elected. Otherwise, there is a run-off between the two first candidates.

Approval Voting: used in many scientific societies, was formally introduced by Robert Weber in 1977, and has been practiced in the Sparta of antique Greece.

The voter may designate as many candidates as he wishes. The candidate most designated wins.

The question implicitly asked is: who are the candidates acceptable for you?

In 1433, Nicolas Cusanus proposed what is known today as Borda's method (1780):

| Points | $30 \%$ | $32 \%$ | $38 \%$ |
| :---: | :---: | :---: | :---: |
| 2 | $A$ | $B$ | $C$ |
| 1 | $B$ | $C$ | $A$ |
| 0 | $C$ | $A$ | $B$ |

In 1433, Nicolas Cusanus proposed what is known today as Borda's method (1780):

| Points | $30 \%$ | $32 \%$ | $38 \%$ |
| :---: | :---: | :---: | :---: |
| 2 | $A$ | $B$ | $C$ |
| 1 | $B$ | $C$ | $A$ |
| 0 | $C$ | $A$ | $B$ |

Borda score
A: $60+38=98$
B: $30+64=94$
C: $32+76=108$

In 1433, Nicolas Cusanus proposed what is known today as Borda's method (1780):

| Points | $30 \%$ | $32 \%$ | $38 \%$ |
| :---: | :---: | :---: | :---: |
| 2 | $A$ | $B$ | $C$ |
| 1 | $B$ | $C$ | $A$ |
| 0 | $C$ | $A$ | $B$ |

Borda score
A: $60+38=98$
B: $30+64=94$
C: $32+76=108$
Or,

|  | $A$ | $B$ | $C$ | Borda score |
| :---: | :---: | :---: | :---: | :---: |
| $A$ | - | $68 \%$ | $30 \%$ | 98 |
| $B$ | $32 \%$ | - | $62 \%$ | 94 |
| $C$ | $70 \%$ | $38 \%$ | - | 108 |

In 1433, Nicolas Cusanus proposed what is known today as Borda's method (1780):

| Points | $30 \%$ | $32 \%$ | $38 \%$ |
| :---: | :---: | :---: | :---: |
| 2 | $A$ | $B$ | $C$ |
| 1 | $B$ | $C$ | $A$ |
| 0 | $C$ | $A$ | $B$ |

Borda score
A: $60+38=98$
B: $30+64=94$
C: $32+76=108$
Or,

|  | $A$ | $B$ | $C$ | Borda score |
| :---: | :---: | :---: | :---: | :---: |
| $A$ | - | $68 \%$ | $30 \%$ | 98 |
| $B$ | $32 \%$ | - | $62 \%$ | 94 |
| $C$ | $70 \%$ | $38 \%$ | - | 108 |

The Borda-ranking: $C \succ A \succ B$.

| $5 \%$ | $33 \%$ | $34 \%$ | $28 \%$ |
| :---: | :---: | :---: | :---: |
| $A$ | $A$ | $B$ | $C$ |
| $B$ | $C$ | $C$ | $B$ |
| $C$ | $B$ | $A$ | $A$ |


|  | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $A$ | - | $38 \%$ | $38 \%$ |
| $B$ | $62 \%$ | - | $39 \%$ |
| $C$ | $62 \%$ | $61 \%$ | - |


| $5 \%$ | $33 \%$ | $34 \%$ | $28 \%$ |
| :---: | :---: | :---: | :---: |
| $A$ | $A$ | $B$ | $C$ |
| $B$ | $C$ | $C$ | $B$ |
| $C$ | $B$ | $A$ | $A$ |


|  | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $A$ | - | $38 \%$ | $38 \%$ |
| $B$ | $62 \%$ | - | $39 \%$ |
| $C$ | $62 \%$ | $61 \%$ | - |

- (1) First-past-the-post: $A \succ B \succ C$

| $5 \%$ | $33 \%$ | $34 \%$ | $28 \%$ |
| :---: | :---: | :---: | :---: |
| $A$ | $A$ | $B$ | $C$ |
| $B$ | $C$ | $C$ | $B$ |
| $C$ | $B$ | $A$ | $A$ |


|  | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $A$ | - | $38 \%$ | $38 \%$ |
| $B$ | $62 \%$ | - | $39 \%$ |
| $C$ | $62 \%$ | $61 \%$ | - |

- (1) First-past-the-post: $A \succ B \succ C$
- (2)Two-past-the-post: $B \succ A \succ C$

| $5 \%$ | $33 \%$ | $34 \%$ | $28 \%$ |
| :---: | :---: | :---: | :---: |
| $A$ | $A$ | $B$ | $C$ |
| $B$ | $C$ | $C$ | $B$ |
| $C$ | $B$ | $A$ | $A$ |


|  | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $A$ | - | $38 \%$ | $38 \%$ |
| $B$ | $62 \%$ | - | $39 \%$ |
| $C$ | $62 \%$ | $61 \%$ | - |

- (1) First-past-the-post: $A \succ B \succ C$
- (2)Two-past-the-post: $B \succ A \succ C$
- (3) Borda: $C \succ B \succ A$ (and Condorcet)

| 5\% | 33\% | 34\% | 28\% |  | A | $B$ | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | A | B | C | A | - | 38\% | 38\% |
| $B$ | C | C | $B$ | $B$ | 62\% | - | 39\% |
| C | $B$ | A | A | $C$ | 62\% | 61\% | - |

- (1) First-past-the-post: $A \succ B \succ C$
- (2)Two-past-the-post: $B \succ A \succ C$
- (3) Borda: $C \succ B \succ A$ (and Condorcet)

Strategic manipulation pays:

| $5 \%$ | $33 \%$ | $34 \%$ | $28 \%$ |
| :---: | :---: | :---: | :---: |
| $A$ | $A$ | $B$ | $C$ |
| $B$ | $C$ | $C$ | $B$ |
| $C$ | $B$ | $A$ | $A$ |


|  | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $A$ | - | $38 \%$ | $38 \%$ |
| $B$ | $62 \%$ | - | $39 \%$ |
| $C$ | $62 \%$ | $61 \%$ | - |

- (1) First-past-the-post: $A \succ B \succ C$
- (2)Two-past-the-post: $B \succ A \succ C$
- (3) Borda: $C \succ B \succ A$ (and Condorcet)

Strategic manipulation pays:

- If with (1), the $28 \%$ vote for $B: B$ wins.

| $5 \%$ | $33 \%$ | $34 \%$ | $28 \%$ |
| :---: | :---: | :---: | :---: |
| $A$ | $A$ | $B$ | $C$ |
| $B$ | $C$ | $C$ | $B$ |
| $C$ | $B$ | $A$ | $A$ |


|  | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $A$ | - | $38 \%$ | $38 \%$ |
| $B$ | $62 \%$ | - | $39 \%$ |
| $C$ | $62 \%$ | $61 \%$ | - |

- (1) First-past-the-post: $A \succ B \succ C$
- (2)Two-past-the-post: $B \succ A \succ C$
- (3) Borda: $C \succ B \succ A$ (and Condorcet)

Strategic manipulation pays:

- If with (1), the $28 \%$ vote for $B: B$ wins.
- If with (2), the $33 \%$ vote for $C$ : $C$ wins.

| $5 \%$ | $33 \%$ | $34 \%$ | $28 \%$ |
| :---: | :---: | :---: | :---: |
| $A$ | $A$ | $B$ | $C$ |
| $B$ | $C$ | $C$ | $B$ |
| $C$ | $B$ | $A$ | $A$ |


|  | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $A$ | - | $38 \%$ | $38 \%$ |
| $B$ | $62 \%$ | - | $39 \%$ |
| $C$ | $62 \%$ | $61 \%$ | - |

- (1) First-past-the-post: $A \succ B \succ C$
- (2)Two-past-the-post: $B \succ A \succ C$
- (3) Borda: $C \succ B \succ A$ (and Condorcet)

Strategic manipulation pays:

- If with (1), the $28 \%$ vote for $B: B$ wins.
- If with (2), the $33 \%$ vote for $C$ : $C$ wins.
- If with (3), the $28 \%$ vote $B \succ C \succ A$ : $B$ wins.

The great hope-since Ramun Llull in 1299-has been to choose a Condorcet-winner: a candidate who beats every possible opponent face-to-face.

The great hope-since Ramun Llull in 1299—has been to choose a Condorcet-winner: a candidate who beats every possible opponent face-to-face.

Of course, there may be no Condorcet-winner:

| $30 \%$ | $32 \%$ | $38 \%$ |
| :---: | :---: | :---: |
| $A$ | $B$ | $C$ |
| $B$ | $C$ | $A$ |
| $C$ | $A$ | $B$ |

The great hope-since Ramun Llull in 1299—has been to choose a Condorcet-winner: a candidate who beats every possible opponent face-to-face.

Of course, there may be no Condorcet-winner:

| $30 \%$ | $32 \%$ | $38 \%$ |
| :---: | :---: | :---: |
| $A$ | $B$ | $C$ |
| $B$ | $C$ | $A$ |
| $C$ | $A$ | $B$ |


|  | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $A$ | - | $68 \%$ | $30 \%$ |
| $B$ | $32 \%$ | - | $62 \%$ |
| $C$ | $70 \%$ | $38 \%$ | - |

The great hope-since Ramun Llull in 1299—has been to choose a Condorcet-winner: a candidate who beats every possible opponent face-to-face.

Of course, there may be no Condorcet-winner:

| $30 \%$ | $32 \%$ | $38 \%$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A$ | $B$ | $C$ |  |  |  |  |
| $B$ | $C$ | $A$ |  |  |  |  |
| $C$ | $A$ | $B$ | $A$ | - | $68 \%$ | $30 \%$ |
|  | $B$ | $32 \%$ | - | $62 \%$ |  |  |
| $C$ | $70 \%$ | $38 \%$ | - |  |  |  |

because

$$
A(68 \%) \succ B(62 \%) \succ C(70 \%) \succ A
$$

The great hope-since Ramun Llull in 1299—has been to choose a Condorcet-winner: a candidate who beats every possible opponent face-to-face.

Of course, there may be no Condorcet-winner:

| $30 \%$ | $32 \%$ | $38 \%$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A$ | $B$ | $C$ |  |  |  |  |
| $B$ | $C$ | $A$ |  |  |  |  |
| $C$ | $A$ | $B$ | $A$ | - | $68 \%$ | $30 \%$ |
|  | $B$ | $32 \%$ | - | $62 \%$ |  |  |
| $C$ | $70 \%$ | $38 \%$ | - |  |  |  |

because

$$
A(68 \%) \succ B(62 \%) \succ C(70 \%) \succ A
$$

The Condorcet paradox.

| $5 \%$ | $33 \%$ | $34 \%$ | $28 \%$ |
| :---: | :---: | :---: | :---: |
| $A$ | $A$ | $B$ | $C$ |
| $B$ | $C$ | $C$ | $B$ |
| $C$ | $B$ | $A$ | $A$ |


|  | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $A$ | - | $38 \%$ | $38 \%$ |
| $B$ | $62 \%$ | - | $39 \%$ |
| $C$ | $62 \%$ | $61 \%$ | - |

- (1) First-past-the-post: $A$ wins
- (2)Two-past-the-post: $B$ wins
- (3) Borda: C wins.

| $5 \%$ | $33 \%$ | $34 \%$ | $28 \%$ |
| :---: | :---: | :---: | :---: |
| $A$ | $A$ | $B$ | $C$ |
| $B$ | $C$ | $C$ | $B$ |
| $C$ | $B$ | $A$ | $A$ |


|  | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $A$ | - | $38 \%$ | $38 \%$ |
| $B$ | $62 \%$ | - | $39 \%$ |
| $C$ | $62 \%$ | $61 \%$ | - |

- (1) First-past-the-post: $A$ wins
- (2)Two-past-the-post: $B$ wins
- (3) Borda: C wins.

Arrow's paradox:

| $5 \%$ | $33 \%$ | $34 \%$ | $28 \%$ |
| :---: | :---: | :---: | :---: |
| $A$ | $A$ | $B$ | $C$ |
| $B$ | $C$ | $C$ | $B$ |
| $C$ | $B$ | $A$ | $A$ |


|  | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $A$ | - | $38 \%$ | $38 \%$ |
| $B$ | $62 \%$ | - | $39 \%$ |
| $C$ | $62 \%$ | $61 \%$ | - |

- (1) First-past-the-post: $A$ wins
- (2)Two-past-the-post: $B$ wins
- (3) Borda: C wins.

Arrow's paradox:

- If with (1), $C$ (a loser) drops out, $B$ wins; if $B$ (a loser) drops out $C$ wins.

| $5 \%$ | $33 \%$ | $34 \%$ | $28 \%$ |
| :---: | :---: | :---: | :---: |
| $A$ | $A$ | $B$ | $C$ |
| $B$ | $C$ | $C$ | $B$ |
| $C$ | $B$ | $A$ | $A$ |


|  | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $A$ | - | $38 \%$ | $38 \%$ |
| $B$ | $62 \%$ | - | $39 \%$ |
| $C$ | $62 \%$ | $61 \%$ | - |

- (1) First-past-the-post: $A$ wins
- (2)Two-past-the-post: $B$ wins
- (3) Borda: C wins.


## Arrow's paradox:

- If with (1), $C$ (a loser) drops out, $B$ wins; if $B$ (a loser) drops out $C$ wins.
- If with (2), $A$ (a loser) drops out, $C$ wins.

| 2000 Election | Votes | Electoral votes | Florida votes |
| :--- | :---: | :---: | :---: |
| George W. Bush | $50,456,002$ | 271 | $2,912,790$ |
| Albert Gore | $50,999,897$ | 266 | $2,912,253$ |
| Ralph Nader | $2,882,955$ | 0 | 97,488 |


| 2000 Election | Votes | Electoral votes | Florida votes |
| :--- | :---: | :---: | :---: |
| George W. Bush | $50,456,002$ | 271 | $2,912,790$ |
| Albert Gore | $50,999,897$ | 266 | $2,912,253$ |
| Ralph Nader | $2,882,955$ | 0 | 97,488 |

Florida had 25 electoral votes.

| 2000 Election | Votes | Electoral votes | Florida votes |
| :--- | :---: | :---: | :---: |
| George W. Bush | $50,456,002$ | 271 | $2,912,790$ |
| Albert Gore | $50,999,897$ | 266 | $2,912,253$ |
| Ralph Nader | $2,882,955$ | 0 | 97,488 |

Florida had 25 electoral votes. Most who voted for Nader would have voted for Gore. Without Nader in Florida:

| 2000 Election | Votes | Electoral votes | Florida votes |
| :--- | :---: | :---: | :---: |
| George W. Bush | $50,456,002$ | 271 | $2,912,790$ |
| Albert Gore | $50,999,897$ | 266 | $2,912,253$ |
| Ralph Nader | $2,882,955$ | 0 | 97,488 |

Florida had 25 electoral votes. Most who voted for Nader would have voted for Gore. Without Nader in Florida:

| 2000 Election | Electoral votes |
| :--- | :---: |
| George W. Bush | 246 |
| Albert Gore | 291 |


| 2000 Election | Votes | Electoral votes | Florida votes |
| :--- | :---: | :---: | :---: |
| George W. Bush | $50,456,002$ | 271 | $2,912,790$ |
| Albert Gore | $50,999,897$ | 266 | $2,912,253$ |
| Ralph Nader | $2,882,955$ | 0 | 97,488 |

Florida had 25 electoral votes. Most who voted for Nader would have voted for Gore. Without Nader in Florida:

| 2000 Election | Electoral votes |
| :--- | :---: |
| George W. Bush | 246 |
| Albert Gore | 291 |

Arrow's paradox: a candidate's presence or absence can change the ranking between the others.

Paradoxes Impossbilities Majority Judgment Theory Methods of Voting Paradoxes in Theory Paradoxes in Practice Arrow Paradox in French Elections: 2002

First round results 2002 (16 candidates, 72\% participation):

| $\frac{\text { Chirac }}{}$ | $\frac{\text { Le Pen }}{16,86 \%}$ | $\frac{\text { Jospin }}{16,18 \%}$ | Bayrou <br> $6,84 \%$ | Laguiller <br> $5,72 \%$ | Chévènement <br> $5,33 \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: |


| Mamère | Besancenot | Saint-Josse | Madelin | Hue | Mégret |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $5,25 \%$ | $4,25 \%$ | $4,23 \%$ | $3,91 \%$ | $3,37 \%$ | $2,34 \%$ |

$$
\begin{array}{ccccc}
\hline \text { (Pasqua) } & \text { Taubira } & \text { Lepage } & \text { Boutin } & \text { Gluckstein } \\
\cline { 1 - 6 } & 2,32 \% & 1,88 \% & 1,19 \% & 0,47 \% \\
\hline
\end{array}
$$

First round results 2002 (16 candidates, 72\% participation):

| Chirac | Le Pen | Jospin | Bayrou | Laguiller | Chévènement |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 19,88\% | 16,86\% | 16,18\% | 6,84\% | 5,72\% | 5,33\% |


| Mamère | Besancenot | Saint-Josse | Madelin | Hue | Mégret |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $5,25 \%$ | $4,25 \%$ | $4,23 \%$ | $3,91 \%$ | $3,37 \%$ | $2,34 \%$ |

$$
\begin{array}{ccccc}
\hline \text { (Pasqua) } & \begin{array}{l}
\text { Taubira }
\end{array} & \text { Lepage } & \text { Boutin } & \text { Gluckstein } \\
\cline { 4 - 6 } & 2,32 \% & 1,88 \% & 1,19 \% & 0,47 \% \\
\hline
\end{array}
$$

Second round results 2002 (80\% participation):

| Chirac | Le Pen |
| :---: | :---: |
| $82,21 \%$ | $17,79 \%$ |

First round results 2002 (16 candidates, 72\% participation):

| $\frac{\text { Chirac }}{}$ | $\underline{\text { Le Pen }}$ | $\frac{\text { Jospin }}{}$ | Bayrou | Laguiller | Chévènement <br> $19,88 \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $16,86 \%$ | $16,18 \%$ | $6,84 \%$ | $5,72 \%$ | $5,33 \%$ |  |


| Mamère | Besancenot | Saint-Josse | Madelin | Hue | Mégret |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $5,25 \%$ | $4,25 \%$ | $4,23 \%$ | $3,91 \%$ | $3,37 \%$ | $2,34 \%$ |

$$
\begin{array}{ccccc}
\hline \text { (Pasqua) } & \begin{array}{l}
\text { Taubira }
\end{array} & \text { Lepage } & \text { Boutin } & \text { Gluckstein } \\
\cline { 4 - 6 } & 2,32 \% & 1,88 \% & 1,19 \% & 0,47 \% \\
\hline
\end{array}
$$

Second round results 2002 (80\% participation):

| Chirac | Le Pen |
| :---: | :---: |
| $82,21 \%$ | $17,79 \%$ | | Chirac | Jospin |
| :---: | :---: |
| $<50 \% ?$ | $>50 \% ?$ |

First round results 2002 (16 candidates, 72\% participation):

| Chirac | Le Pen | Jospin | Bayrou | Laguiller | Chévènement |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 19,88\% | 16,86\% | 16,18\% | 6,84\% | 5,72\% | 5,33\% |


| Mamère | Besancenot | Saint-Josse | Madelin | Hue | Mégret |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $5,25 \%$ | $4,25 \%$ | $4,23 \%$ | $3,91 \%$ | $3,37 \%$ | $2,34 \%$ |

$$
\begin{array}{ccccc}
\hline \text { (Pasqua) } & \text { Taubira } & \text { Lepage } & \text { Boutin } & \text { Gluckstein } \\
\cline { 4 - 6 } & 2,32 \% & 1,88 \% & 1,19 \% & 0,47 \% \\
\hline
\end{array}
$$

Second round results 2002 (80\% participation):

| Chirac | Le Pen |
| :---: | :---: | :---: | :---: |
| $82,21 \%$ | $17,79 \%$ |$\quad$| Chirac | Jospin |
| :---: | :---: |
| $<50 \% ?$ | $>50 \% ?$ | | Jospin | Le Pen |
| :---: | :---: |
| $>75 \%$ | $<25 \%$ |

(1) Paradoxes

- Methods of Voting
- Paradoxes in Theory
- Paradoxes in Practice
(2) Impossbilities
- May's Axioms for Two Candidates
- Arrow's Impossibility Theorem
(3) Majority Judgment
- From Practice
- Small Jury
- Large ElectorateTheory
- Domination Paradox
- Possibility
- Manipulation

Paradoxes Impossbilities Majority Judgment Theory May's Axioms for Two Candidates Arrow's Impossibility Theorer

## May's (1952) Axioms of Majority Rule

Majority rule between two candidates asks each voter his preference/indifference among the two, the winner is the candidate most preferred.

Paradoxes Impossbilities Majority Judgment Theory

## May's (1952) Axioms of Majority Rule

Majority rule between two candidates asks each voter his preference/indifference among the two, the winner is the candidate most preferred.

A method of ranking among two candidates asks each voter his opinion about each candidate, and outputs which candidate is the best or a tie.

## May's (1952) Axioms of Majority Rule

Majority rule between two candidates asks each voter his preference/indifference among the two, the winner is the candidate most preferred.

A method of ranking among two candidates asks each voter his opinion about each candidate, and outputs which candidate is the best or a tie.

For two candidates, majority rule is the unique method satisfying the axioms:

## May's (1952) Axioms of Majority Rule

Majority rule between two candidates asks each voter his preference/indifference among the two, the winner is the candidate most preferred.

A method of ranking among two candidates asks each voter his opinion about each candidate, and outputs which candidate is the best or a tie.

For two candidates, majority rule is the unique method satisfying the axioms:

- A0 [Based on preferences] A voter expresses her opinion by preferring one candidate or being indifferent.


## May's (1952) Axioms of Majority Rule

Majority rule between two candidates asks each voter his preference/indifference among the two, the winner is the candidate most preferred.

A method of ranking among two candidates asks each voter his opinion about each candidate, and outputs which candidate is the best or a tie.

For two candidates, majority rule is the unique method satisfying the axioms:

- A0 [Based on preferences] A voter expresses her opinion by preferring one candidate or being indifferent.
- A1 [Universal domain] All opinions are admissible.


## May's (1952) Axioms of Majority Rule

Majority rule between two candidates asks each voter his preference/indifference among the two, the winner is the candidate most preferred.

A method of ranking among two candidates asks each voter his opinion about each candidate, and outputs which candidate is the best or a tie.

For two candidates, majority rule is the unique method satisfying the axioms:

- A0 [Based on preferences] A voter expresses her opinion by preferring one candidate or being indifferent.
- A1 [Universal domain] All opinions are admissible.
- A2 [Anonymous] Permuting names of voters does not change the outcome.


## May's (1952) Axioms of Majority Rule

Majority rule between two candidates asks each voter his preference/indifference among the two, the winner is the candidate most preferred.

A method of ranking among two candidates asks each voter his opinion about each candidate, and outputs which candidate is the best or a tie.

For two candidates, majority rule is the unique method satisfying the axioms:

- A0 [Based on preferences] A voter expresses her opinion by preferring one candidate or being indifferent.
- A1 [Universal domain] All opinions are admissible.
- A2 [Anonymous] Permuting names of voters does not change the outcome.
- A3 [Neutral] Permuting names of candidates does not change the outcome.


## May's (1952) Axioms of Majority Rule

Majority rule between two candidates asks each voter his preference/indifference among the two, the winner is the candidate most preferred.

A method of ranking among two candidates asks each voter his opinion about each candidate, and outputs which candidate is the best or a tie.

For two candidates, majority rule is the unique method satisfying the axioms:

- A0 [Based on preferences] A voter expresses her opinion by preferring one candidate or being indifferent.
- A1 [Universal domain] All opinions are admissible.
- A2 [Anonymous] Permuting names of voters does not change the outcome.
- A3 [Neutral] Permuting names of candidates does not change the outcome.
- A4 [Monotone] If candidate $A$ wins or is in a tie and one or more voters change their preferences in favour of $A$ then $A$ wins.


## May's (1952) Axioms of Majority Rule

Majority rule between two candidates asks each voter his preference/indifference among the two, the winner is the candidate most preferred.

A method of ranking among two candidates asks each voter his opinion about each candidate, and outputs which candidate is the best or a tie.

For two candidates, majority rule is the unique method satisfying the axioms:

- A0 [Based on preferences] A voter expresses her opinion by preferring one candidate or being indifferent.
- A1 [Universal domain] All opinions are admissible.
- A2 [Anonymous] Permuting names of voters does not change the outcome.
- A3 [Neutral] Permuting names of candidates does not change the outcome.
- A4 [Monotone] If candidate $A$ wins or is in a tie and one or more voters change their preferences in favour of $A$ then $A$ wins.
- A5 [Complete] The rule guarantees an outcome: one of the two candidates wins or they are tied.


## May's (1952) Axioms of Majority Rule

Majority rule between two candidates asks each voter his preference/indifference among the two, the winner is the candidate most preferred.

A method of ranking among two candidates asks each voter his opinion about each candidate, and outputs which candidate is the best or a tie.

For two candidates, majority rule is the unique method satisfying the axioms:

- A0 [Based on preferences] A voter expresses her opinion by preferring one candidate or being indifferent.
- A1 [Universal domain] All opinions are admissible.
- A2 [Anonymous] Permuting names of voters does not change the outcome.
- A3 [Neutral] Permuting names of candidates does not change the outcome.
- A4 [Monotone] If candidate $A$ wins or is in a tie and one or more voters change their preferences in favour of $A$ then $A$ wins.
- A5 [Complete] The rule guarantees an outcome: one of the two candidates wins or they are tied.

Proof: simple.

## Ranking Methods Based on Preferences

A method of ranking $\succeq$ is a binary relation which takes as input opinions of voters about any set of candidates and as output, compares any two candidates (one is the best or they are tie).

It must satisfy:

## Ranking Methods Based on Preferences

A method of ranking $\succeq$ is a binary relation which takes as input opinions of voters about any set of candidates and as output, compares any two candidates (one is the best or they are tie).

It must satisfy:

- A0 [Based on preferences] A voter expresses her opinion by ranking them.
- A1 [Unrestricted Domain] All voters opinions are admissible.
- A2 [Anonymous] Permuting names of voters does not change the outcome.
- A3 [Neutral] Permuting names of candidates does not change the outcome.
- A4 [Monotone] If $A$ wins or is in a tie and one or more voters change their preferences in favour of $A$ then $A$ wins.
- A5 [Complete] The rule guarantees an outcome: or the two candidates are tie or one is the winner.


## Ranking Methods Based on Preferences

A method of ranking $\succeq$ is a binary relation which takes as input opinions of voters about any set of candidates and as output, compares any two candidates (one is the best or they are tie).

It must satisfy:

- A0 [Based on preferences] A voter expresses her opinion by ranking them.
- A1 [Unrestricted Domain] All voters opinions are admissible.
- A2 [Anonymous] Permuting names of voters does not change the outcome.
- A3 [Neutral] Permuting names of candidates does not change the outcome.
- A4 [Monotone] If $A$ wins or is in a tie and one or more voters change their preferences in favour of $A$ then $A$ wins.
- A5 [Complete] The rule guarantees an outcome: or the two candidates are tie or one is the winner.
- A6 [Transitive] If $A \succeq B$ and $B \succeq C$ then $A \succeq C$.


## Ranking Methods Based on Preferences

A method of ranking $\succeq$ is a binary relation which takes as input opinions of voters about any set of candidates and as output, compares any two candidates (one is the best or they are tie).

It must satisfy:

- A0 [Based on preferences] A voter expresses her opinion by ranking them.
- A1 [Unrestricted Domain] All voters opinions are admissible.
- A2 [Anonymous] Permuting names of voters does not change the outcome.
- A3 [Neutral] Permuting names of candidates does not change the outcome.
- A4 [Monotone] If $A$ wins or is in a tie and one or more voters change their preferences in favour of $A$ then $A$ wins.
- A5 [Complete] The rule guarantees an outcome: or the two candidates are tie or one is the winner.
- A6 [Transitive] If $A \succeq B$ and $B \succeq C$ then $A \succeq C$.
- A7 [Independence of irrelevant alternatives (IIA)] If $A \succeq B$ then whatever candidates are dropped or adjoined $A \succeq B$.

Theorem (Arrow's Impossibility)
No method based on preferences satisfying axioms A1 to A6 is IIA.

Theorem (Arrow's Impossibility)
No method based on preferences satisfying axioms A1 to A6 is IIA.
It is not the usual formulation.

## Theorem (Arrow's Impossibility)

No method based on preferences satisfying axioms A1 to A6 is IIA.
It is not the usual formulation.

Proof: simple.

## Theorem (Arrow's Impossibility)

No method based on preferences satisfying axioms A1 to A6 is IIA.
It is not the usual formulation.

Proof: simple.
Definition: A method is strategy proof if honestly is a dominant strategy.

## Theorem (Arrow's Impossibility)

No method based on preferences satisfying axioms A1 to A6 is IIA.
It is not the usual formulation.

Proof: simple.
Definition: A method is strategy proof if honestly is a dominant strategy.

## Theorem (Gibbard/Satterthwaite's impossibility)

No method based on preferences satisfying axioms A1 to A6 is strategy proof.
(1) Paradoxes

- Methods of Voting
- Paradoxes in Theory
- Paradoxes in Practice
(2) Impossbilities
- May's Axioms for Two Candidates
- Arrow's Impossibility Theorem
(3) Majority Judgment
- From Practice
- Small Jury
- Large Electorate
(4) Theory
- Domination Paradox
- Possibility
- Manipulation


## MIT Press 2011

## MAJORITY JUDGMENT <br> Measuring, Ranking, and Electing



MICHEL BALINSKI AND RIDA LARAKI

Paradoxes Impossbilities Majority Judgment Theory From Practice Small Jury Large Electorate

## Arrow's Paradox in the 1997 European Championships, Figure Skating

Before the performance of Vlascenko, the order was: $1^{\text {st }}$ Urmanov, $2^{\text {nd }}$ Zagorodniuk, $3^{\text {rd }}$ Candeloro.

Before the performance of Vlascenko, the order was: $1^{\text {st }}$ Urmanov, $2^{\text {nd }}$ Zagorodniuk, $3^{\text {rd }}$ Candeloro.

After Vlascenko's performance, the order was reversed: $1^{\text {st }}$ Urmanov, $2^{\text {nd }}$ Candeloro, $3^{\text {rd }}$ Zagorodniuk.

Before the performance of Vlascenko, the order was: $1^{\text {st }}$ Urmanov, $2^{\text {nd }}$ Zagorodniuk, $3^{\text {rd }}$ Candeloro.

After Vlascenko's performance, the order was reversed: $1^{\text {st }}$ Urmanov, $2^{\text {nd }}$ Candeloro, $3^{\text {rd }}$ Zagorodniuk.

Why?

Before the performance of Vlascenko, the order was: $1^{\text {st }}$ Urmanov, $2^{\text {nd }}$ Zagorodniuk, $3^{\text {rd }}$ Candeloro.

After Vlascenko's performance, the order was reversed: $1^{\text {st }}$ Urmanov, $2^{\text {nd }}$ Candeloro, $3^{\text {rd }}$ Zagorodniuk.

Why? Because the method is a function of : rankings.

## Arrow's Paradox in the 1997 European Championships, Figure Skating

Before the performance of Vlascenko, the order was:
$1^{\text {st }}$ Urmanov, $2^{\text {nd }}$ Zagorodniuk, $3^{\text {rd }}$ Candeloro.
After Vlascenko's performance, the order was reversed:
$1^{\text {st }}$ Urmanov, $2^{\text {nd }}$ Candeloro, $3^{\text {rd }}$ Zagorodniuk.
Why? Because the method is a function of : rankings.

|  | $J_{1}$ | $J_{2}$ | $J_{3}$ | $J_{4}$ | $J_{5}$ | $J_{6}$ | $J_{7}$ | $J_{8}$ | $J_{9}$ | Mark | Place |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Urmanov | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | $1 / 8$ | $1^{\text {st }}$ |
| Candeloro | 3 | 2 | 5 | 2 | 3 | 3 | 5 | 6 | 6 | $3 / 5$ | $2^{\text {nd }}$ |
| Zagorodniuk | 5 | 5 | 4 | 4 | 2 | 4 | 2 | 2 | 3 | $4 / 7$ | $3^{\text {rd }}$ |
| Yagudin | 4 | 3 | 3 | 6 | 4 | 6 | 4 | 3 | 2 | $4 / 7$ | $4^{\text {th }}$ |
| Kulik | 2 | 4 | 2 | 3 | 6 | 5 | 3 | 4 | 5 | $4 / 6$ | $5^{\text {th }}$ |
| Vlascenko | 6 | 6 | 6 | 5 | 5 | 1 | 6 | 5 | 4 | $5 / 5$ | $6^{\text {th }}$ |

## Arrow's Paradox in the 1997 European Championships, Figure Skating

Before the performance of Vlascenko, the order was:
$1^{\text {st }}$ Urmanov, $2^{\text {nd }}$ Zagorodniuk, $3^{\text {rd }}$ Candeloro.
After Vlascenko's performance, the order was reversed:
$1^{\text {st }}$ Urmanov, $2^{\text {nd }}$ Candeloro, $3^{\text {rd }}$ Zagorodniuk.
Why? Because the method is a function of : rankings.

|  | $J_{1}$ | $J_{2}$ | $J_{3}$ | $J_{4}$ | $J_{5}$ | $J_{6}$ | $J_{7}$ | $J_{8}$ | $J_{9}$ | Mark | Place |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Urmanov | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | $1 / 8$ | $1^{\text {st }}$ |
| Candeloro | 3 | 2 | 5 | 2 | 3 | 3 | 5 | 6 | 6 | $3 / 5$ | $2^{\text {nd }}$ |
| Zagorodniuk | 5 | 5 | 4 | 4 | 2 | 4 | 2 | 2 | 3 | $4 / 7$ | $3^{\text {rd }}$ |
| Yagudin | 4 | 3 | 3 | 6 | 4 | 6 | 4 | 3 | 2 | $4 / 7$ | $4^{\text {th }}$ |
| Kulik | 2 | 4 | 2 | 3 | 6 | 5 | 3 | 4 | 5 | $4 / 6$ | $5^{\text {th }}$ |
| Vlascenko | 6 | 6 | 6 | 5 | 5 | 1 | 6 | 5 | 4 | $5 / 5$ | $6^{\text {th }}$ |

Arrow's paradox occurs because of Judge 6's strategic voting!

## Arrow's Paradox in the 1997 European Championships, Figure Skating

Before the performance of Vlascenko, the order was:
$1^{\text {st }}$ Urmanov, $2^{\text {nd }}$ Zagorodniuk, $3^{\text {rd }}$ Candeloro.
After Vlascenko's performance, the order was reversed:
$1^{\text {st }}$ Urmanov, $2^{\text {nd }}$ Candeloro, $3^{\text {rd }}$ Zagorodniuk.
Why? Because the method is a function of : rankings.

|  | $J_{1}$ | $J_{2}$ | $J_{3}$ | $J_{4}$ | $J_{5}$ | $J_{6}$ | $J_{7}$ | $J_{8}$ | $J_{9}$ | Mark | Place |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Urmanov | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | $1 / 8$ | $1^{\text {st }}$ |
| Candeloro | 3 | 2 | 5 | 2 | 3 | 3 | 5 | 6 | 6 | $3 / 5$ | $2^{\text {nd }}$ |
| Zagorodniuk | 5 | 5 | 4 | 4 | 2 | 4 | 2 | 2 | 3 | $4 / 7$ | $3^{\text {rd }}$ |
| Yagudin | 4 | 3 | 3 | 6 | 4 | 6 | 4 | 3 | 2 | $4 / 7$ | $4^{\text {th }}$ |
| Kulik | 2 | 4 | 2 | 3 | 6 | 5 | 3 | 4 | 5 | $4 / 6$ | $5^{\text {th }}$ |
| Vlascenko | 6 | 6 | 6 | 5 | 5 | 1 | 6 | 5 | 4 | $5 / 5$ | $6^{\text {th }}$ |

Arrow's paradox occurs because of Judge 6's strategic voting!
This flip-flop was so strident that the rules used for a half-century were changed to a method based on measure, as in gymnastic, diving, music competition.

Paradoxes Impossbilities Majority Judgment Theory From Practice Small Jury Large Electorate

## Rules in Diving

The rules of the Fédération Internationale de Natation (FINA) are as follows:

Paradoxes Impossbilities Majority Judgment Theory From Practice Small Jury Large Electorate

## Rules in Diving

The rules of the Fédération Internationale de Natation (FINA) are as follows:

- Each dive has a degree of difficulty.

The rules of the Fédération Internationale de Natation (FINA) are as follows:

- Each dive has a degree of difficulty.
- Judges grade each dive on a scale of:


## Rules in Diving

The rules of the Fédération Internationale de Natation (FINA) are as follows:

- Each dive has a degree of difficulty.
- Judges grade each dive on a scale of:
- 0 "completely failed"
- $\frac{1}{2}$ to 2 ; "unsatisfactory"
- $2 \frac{1}{2}$ to $4 \frac{1}{2}$ "deficient"
- 5 to 6 "satisfactory"
- $6 \frac{1}{2}$ to 8 "good"
- $8 \frac{1}{2}$ to 10 "very good"


## Rules in Diving

The rules of the Fédération Internationale de Natation (FINA) are as follows:

- Each dive has a degree of difficulty.
- Judges grade each dive on a scale of:
- 0 "completely failed"
- $\frac{1}{2}$ to 2 ; "unsatisfactory"
- $2 \frac{1}{2}$ to $4 \frac{1}{2}$ "deficient"
- 5 to 6 "satisfactory"
- $6 \frac{1}{2}$ to 8 "good"
- $8 \frac{1}{2}$ to 10 "very good"
- There are either 5 or 7 judges. To minimize manipulability:
- If 5 , the highest and lowest scores of a dive are eliminated leaving 3 scores.
- If 7 , the 2 highest and 2 lowest scores are eliminated, leaving 3 scores.


## Rules in Diving

The rules of the Fédération Internationale de Natation (FINA) are as follows:

- Each dive has a degree of difficulty.
- Judges grade each dive on a scale of:
- 0 "completely failed"
- $\frac{1}{2}$ to 2 ; "unsatisfactory"
- $2 \frac{1}{2}$ to $4 \frac{1}{2}$ "deficient"
- 5 to 6 "satisfactory"
- $6 \frac{1}{2}$ to 8 "good"
- $8 \frac{1}{2}$ to 10 "very good"
- There are either 5 or 7 judges. To minimize manipulability:
- If 5 , the highest and lowest scores of a dive are eliminated leaving 3 scores.
- If 7 , the 2 highest and 2 lowest scores are eliminated, leaving 3 scores.
- The sum of the 3 remaining scores is multiplied by the degree of difficulty to obtain the score of the dive.


## Rules in Diving

The rules of the Fédération Internationale de Natation (FINA) are as follows:

- Each dive has a degree of difficulty.
- Judges grade each dive on a scale of:
- 0 "completely failed"
- $\frac{1}{2}$ to 2 ; "unsatisfactory"
- $2 \frac{1}{2}$ to $4 \frac{1}{2}$ "deficient"
- 5 to 6 "satisfactory"
- $6 \frac{1}{2}$ to 8 "good"
- $8 \frac{1}{2}$ to 10 "very good"
- There are either 5 or 7 judges. To minimize manipulability:
- If 5 , the highest and lowest scores of a dive are eliminated leaving 3 scores.
- If 7 , the 2 highest and 2 lowest scores are eliminated, leaving 3 scores.
- The sum of the 3 remaining scores is multiplied by the degree of difficulty to obtain the score of the dive.
- There are many other instances that use well defined scales of grades, to rank and or to designate winners: guide Michelin, figure skating, gymnastics, concours Chopin, wine competitions, etc.


## A Use of Majority Judgment: Small Jury

Opinion profile: LAMSADE Jury ranking PhD candidates for a grant, 2015

|  | $J_{1}$ | $J_{2}$ | $J_{3}$ | $J_{4}$ | $J_{5}$ | $J_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A: | Excellent | Excellent | V. Good | Excellent | Excellent | Excellent |
| B: | Excellent | V. Good | V. Good | V. Good | Good | V. Good |
| C: | Passable | Excellent | Good | V. Good | V. Good | Excellent |
| D: | V. Good | Good | Passable | Good | Good | Good |
| E: | Good | Passable | V. Good | Good | Good | Good |
| F: | V. Good | Passable | Insufficient | Passable | Passable | Good |

## A Use of Majority Judgment: Small Jury

Opinion profile: LAMSADE Jury ranking PhD candidates for a grant, 2015

|  | $J_{1}$ | $J_{2}$ | $J_{3}$ | $J_{4}$ | $J_{5}$ | $J_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A: | Excellent | Excellent | V. Good | Excellent | Excellent | Excellent |
| B: | Excellent | V. Good | V. Good | V. Good | Good | V. Good |
| C: | Passable | Excellent | Good | V. Good | V. Good | Excellent |
| D: | V. Good | Good | Passable | Good | Good | Good |
| E: | Good | Passable | V. Good | Good | Good | Good |
| F: | V. Good | Passable | Insufficient | Passable | Passable | Good |

Merit profile:

| A: | Excellent | Excellent | Excellent | Excellent | Excellent | V. Good |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B: | Excellent | V. Good | V. Good | V. Good | V. Good | Good |
| C: | Excellent | Excellent | V. Good | V. Good | Good | Passable |
| D: | V. Good | Good | Good | Good | Good | Passable |
| E: | V. Good | Good | Good | Good | Good | Passable |
| F: | V. Good | Good | Passable | Passable | Passable | Insufficent |

## Compact Description of MJ

|  | Excellent | Very Good | Good | Passable | Insufficient |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A:$ | 5 | 1 |  |  |  |
| $B:$ | 1 | 4 | 1 |  |  |
| $C:$ | 2 | 2 | 1 | 1 |  |
| $D:$ |  | 1 | 4 | 1 |  |
| $E:$ |  | 1 | 4 | 1 |  |
| $F:$ |  | 1 | 1 | 3 | 1 |

Merit profile (counts), LAMSADE Jury.

## Compact Description of MJ

|  | Excellent | Very Good | Good | Passable | Insufficient |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A:$ | 5 | 1 |  |  |  |
| $B:$ | 1 | 4 | 1 |  |  |
| $C:$ | 2 | 2 | 1 | 1 |  |
| $D:$ |  | 1 | 4 | 1 |  |
| $E:$ |  | 1 | 4 | 1 |  |
| $F:$ |  | 1 | 1 | 3 | 1 |

Merit profile (counts), LAMSADE Jury.
For each pair of competitors ignore as many equal numbers of highest and lowest grades of their merit profiles as possible until

## Compact Description of MJ

|  | Excellent | Very Good | Good | Passable | Insufficient |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A:$ | 5 | 1 |  |  |  |
| $B:$ | 1 | 4 | 1 |  |  |
| $C:$ | 2 | 2 | 1 | 1 |  |
| $D:$ |  | 1 | 4 | 1 |  |
| $E:$ |  | 1 | 4 | 1 |  |
| $F:$ |  | 1 | 1 | 3 | 1 |

Merit profile (counts), LAMSADE Jury.
For each pair of competitors ignore as many equal numbers of highest and lowest grades of their merit profiles as possible until first order domination or consensus=second order dominance ranks them.

For all pairs (except between $B$ and $C$ ), first order domination decides!

## Compact Description of MJ

|  | Excellent | Very Good | Good | Passable | Insufficient |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A:$ | 5 | 1 |  |  |  |
| $B:$ | 1 | 4 | 1 |  |  |
| $C:$ | 2 | 2 | 1 | 1 |  |
| $D:$ |  | 1 | 4 | 1 |  |
| $E:$ |  | 1 | 4 | 1 |  |
| $F:$ |  | 1 | 1 | 3 | 1 |

Merit profile (counts), LAMSADE Jury.
For each pair of competitors ignore as many equal numbers of highest and lowest grades of their merit profiles as possible until first order domination or consensus=second order dominance ranks them.

For all pairs (except between $B$ and $C$ ), first order domination decides!
Ranking PhD candidates B and C by LAMSADE Jury:

| B: | Excellent | V. Good | V. Good | V. Good | V. Good | Good |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C: | Excellent | Excellent | V. Good | V. Good | Good | Passable |

## Compact Description of MJ

|  | Excellent | Very Good | Good | Passable | Insufficient |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A:$ | 5 | 1 |  |  |  |
| $B:$ | 1 | 4 | 1 |  |  |
| $C:$ | 2 | 2 | 1 | 1 |  |
| $D:$ |  | 1 | 4 | 1 |  |
| $E:$ |  | 1 | 4 | 1 |  |
| $F:$ |  | 1 | 1 | 3 | 1 |

Merit profile (counts), LAMSADE Jury.
For each pair of competitors ignore as many equal numbers of highest and lowest grades of their merit profiles as possible until first order domination or consensus=second order dominance ranks them.

For all pairs (except between $B$ and $C$ ), first order domination decides!
Ranking PhD candidates B and C by LAMSADE Jury:

| B: | Excellent | V. Good | V. Good | V. Good | V. Good | Good |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C: | Excellent | Excellent | V. Good | V. Good | Good | Passable |
|  |  | $B:$ | V. Good | V. Good | V. Good | V. Good |
|  | C: | Excellent | V. Good | V. Good | Good |  |
|  |  |  |  |  |  |  |

## Majority Judgement Ballot (Large Electorate)

## Ballot: Election of the President of France 2012

To be president of France, having taken into account all considerations, I judge, in conscience, that this candidate would be:

|  | Outs- <br> tanding | Excel- <br> lent | Very <br> Good | Good | Accep- <br> able | Insuf- <br> ficient | Reject |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| François Hollande |  |  |  |  |  |  |  |
| François Bayrou |  |  |  |  |  |  |  |
| Nicolas Sarkozy |  |  |  |  |  |  |  |
| Jean-Luc Mélenchon |  |  |  |  |  |  |  |
| Nicolas Dupont-Aignan |  |  |  |  |  |  |  |
| Eva Joly |  |  |  |  |  |  |  |
| Philippe Poutou |  |  |  |  |  |  |  |
| Marine Le Pen |  |  |  |  |  |  |  |
| Nathalie Arthaud |  |  |  |  |  |  |  |
| Jacques Cheminade |  |  |  |  |  |  |  |

## Pool OpinionWay-Terra Nova, April 12-16 2012

|  | Outs- <br> tanding | Excel- <br> lent | Very <br> Good | Good | Accep- <br> able | Insuf- <br> ficient | Reject |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |
| Bayrou | $2.58 \%$ | $9.77 \%$ | $21.71 \%$ | $25.24 \%$ | $20.08 \%$ | $11.94 \%$ | $8.69 \%$ |
| Sarkozy | $9.63 \%$ | $12.35 \%$ | $16.28 \%$ | $10.99 \%$ | $11.13 \%$ | $7.87 \%$ | $31.75 \%$ |
| Mélenchon | $5.43 \%$ | $9.50 \%$ | $12.89 \%$ | $14.65 \%$ | $17.10 \%$ | $15.06 \%$ | $25.37 \%$ |
| Dupont-Aignan | $0.54 \%$ | $2.58 \%$ | $5.97 \%$ | $11.26 \%$ | $20.22 \%$ | $25.51 \%$ | $33.92 \%$ |
| Joly | $0.81 \%$ | $2.99 \%$ | $6.51 \%$ | $11.80 \%$ | $14.65 \%$ | $24.69 \%$ | $38.53 \%$ |
| Poutou | $0.14 \%$ | $1.36 \%$ | $4.48 \%$ | $7.73 \%$ | $12.48 \%$ | $28.09 \%$ | $45.73 \%$ |
| Le Pen | $5.97 \%$ | $7.33 \%$ | $9.50 \%$ | $9.36 \%$ | $13.98 \%$ | $6.24 \%$ | $47.63 \%$ |
| Arthaud | $0.00 \%$ | $1.36 \%$ | $3.80 \%$ | $6.51 \%$ | $13.16 \%$ | $25.24 \%$ | $49.93 \%$ |
| Cheminade | $0.41 \%$ | $0.81 \%$ | $2.44 \%$ | $5.83 \%$ | $11.67 \%$ | $26.87 \%$ | $51.97 \%$ |

## Majority Grade et Gauge

|  | Outs- <br> tanding | Excel- <br> lent | Very <br> Good | Good | Accep- <br> able | Insuf- <br> ficient | Reject |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |

## Majority Grade et Gauge

|  | Outs- <br> tanding | Excel- <br> lent | Very <br> Good | Good | Accep- <br> able | Insuf- <br> ficient | Reject |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |

The Majority Grade=median grade of Hollande is $\alpha=$ Good because:

## Majority Grade et Gauge

|  | Outs- <br> tanding | Excel- <br> lent | Very <br> Good | Good | Accep- <br> able | Insuf- <br> ficient | Reject |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |

The Majority Grade=median grade of Hollande is $\alpha=$ Good because:

- $12.48+16.15+16.42+11.67=56.72 \%$ judge him Good or above.


## Majority Grade et Gauge

|  | Outs- <br> tanding | Excel- <br> lent | Very <br> Good | Good | Accep- <br> able | Insuf- <br> ficient | Reject |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |

The Majority Grade=median grade of Hollande is $\alpha=$ Good because:

- $12.48+16.15+16.42+11.67=56.72 \%$ judge him Good or above.
- $11.67+14.79+14.25+14.24=54.95 \%$ judge him Good or below.


## Majority Grade et Gauge

|  | Outs- <br> tanding | Excel- <br> lent | Very <br> Good | Good | Accep- <br> able | Insuf- <br> ficient | Reject |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |

The Majority Grade=median grade of Hollande is $\alpha=$ Good because:

- $12.48+16.15+16.42+11.67=56.72 \%$ judge him Good or above.
- $11.67+14.79+14.25+14.24=54.95 \%$ judge him Good or below.

The Majority Gauge of Hollande is $(p, \alpha, q)=(45.05 \%$, Good, $43.28 \%)$.

## Majority Grade et Gauge

|  | Outs- <br> tanding | Excel- <br> lent | Very <br> Good | Good | Accep- <br> able | Insuf- <br> ficient | Reject |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |

The Majority Grade=median grade of Hollande is $\alpha=$ Good because:

- $12.48+16.15+16.42+11.67=56.72 \%$ judge him Good or above.
- $11.67+14.79+14.25+14.24=54.95 \%$ judge him Good or below.

The Majority Gauge of Hollande is $(p, \alpha, q)=(45.05 \%$, Good, $43.28 \%)$.
$p=45.05=12.48+16.15+16.42=$ percentage of grade above Good.

## Majority Grade et Gauge

|  | Outs- <br> tanding | Excel- <br> lent | Very <br> Good | Good | Accep- <br> able | Insuf- <br> ficient | Reject |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |

The Majority Grade=median grade of Hollande is $\alpha=$ Good because:

- $12.48+16.15+16.42+11.67=56.72 \%$ judge him Good or above.
- $11.67+14.79+14.25+14.24=54.95 \%$ judge him Good or below.

The Majority Gauge of Hollande is $(p, \alpha, q)=(45.05 \%$, Good, $43.28 \%)$.
$p=45.05=12.48+16.15+16.42=$ percentage of grade above Good.
$q=43.25=14.79+14.25+14.24=$ percentage of grades below Good.

## Majority Grade et Gauge

|  | Outs- <br> tanding | Excel- <br> lent | Very <br> Good | Good | Accep- <br> able | Insuf- <br> ficient | Reject |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |

The Majority Grade=median grade of Hollande is $\alpha=$ Good because:

- $12.48+16.15+16.42+11.67=56.72 \%$ judge him Good or above.
- $11.67+14.79+14.25+14.24=54.95 \%$ judge him Good or below.

The Majority Gauge of Hollande is $(p, \alpha, q)=(45.05 \%$, Good, $43.28 \%)$.
$p=45.05=12.48+16.15+16.42=$ percentage of grade above Good .
$q=43.25=14.79+14.25+14.24=$ percentage of grades below Good.
Because $p=45.05>q=43.28$,

## Majority Grade et Gauge

|  | Outs- <br> tanding | Excel- <br> lent | Very <br> Good | Good | Accep- <br> able | Insuf- <br> ficient | Reject |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |

The Majority Grade=median grade of Hollande is $\alpha=$ Good because:

- $12.48+16.15+16.42+11.67=56.72 \%$ judge him Good or above.
- $11.67+14.79+14.25+14.24=54.95 \%$ judge him Good or below.

The Majority Gauge of Hollande is $(p, \alpha, q)=(45.05 \%$, Good, $43.28 \%)$.
$p=45.05=12.48+16.15+16.42=$ percentage of grade above Good.
$q=43.25=14.79+14.25+14.24=$ percentage of grades below Good.
Because $p=45.05>q=43.28$, Hollande Gauge is +45.05 .

|  | $p$ | $\alpha \pm$ | $q$ | FPP |  |
| :--- | :---: | :---: | :---: | :---: | ---: |
| (1) F. Hollande | $45.05 \%$ | Good +45.05 | $43.28 \%$ | $(1)$ | $28.7 \%$ |
| (2) F. Bayrou | $34.06 \%$ | Good-40.71 | $40.71 \%$ | $(5)$ | $9.1 \%$ |
| (3) N. Sarkozy | $49.25 \%$ | Fair +49.25 | $39.62 \%$ | $(2)$ | $27.3 \%$ |
| (4) J.-L. Mélenchon | $42.47 \%$ | Fair +42.47 | $40.43 \%$ | $(4)$ | $11.0 \%$ |
| (5) N. Dupont-Aignan | $40.57 \%$ | Poor +40.57 | $33.92 \%$ | $(7)$ | $1.5 \%$ |
| (6) E. Joly | $36.77 \%$ | Poor -38.53 | $38.53 \%$ | $(6)$ | $2.3 \%$ |
| (7) P. Poutou | $26.19 \%$ | Poor -45.73 | $45.73 \%$ | $(8)$ | $1.2 \%$ |
| (8) M. Le Pen | $46.13 \%$ | Poor $-47,63$ | $47.63 \%$ | $(3)$ | $17.9 \%$ |
| (9) N. Arthaud | $24.83 \%$ | Poor -49.93 | $49.93 \%$ | $(9)$ | $0.7 \%$ |
| (10) J. Cheminade | $48.03 \%$ | To Reject +48.03 | - | $(10)$ | $0.4 \%$ |

Question asked:
Regardless of who you currently support, I'd like to know what kind of president you think each of the following would be:

## Pew Research Center Poll Results, March 17-27, 2016

## Question asked:

Regardless of who you currently support, I'd like to know what kind of president you think each of the following would be:

|  | Great | Good | Average | Poor | Terrible | Never <br> heard of |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| John Kasich | $5 \%$ | $28 \%$ | $39 \%$ | $13 \%$ | $7 \%$ | $9 \%$ |
| Bernie Sanders | $10 \%$ | $26 \%$ | $26 \%$ | $15 \%$ | $21 \%$ | $3 \%$ |
| Ted Cruz | $7 \%$ | $22 \%$ | $21 \%$ | $17 \%$ | $19 \%$ | $4 \%$ |
| Hillary Clinton | $11 \%$ | $22 \%$ | $20 \%$ | $16 \%$ | $30 \%$ | $1 \%$ |
| Donald Trump | $10 \%$ | $16 \%$ | $12 \%$ | $15 \%$ | $44 \%$ | $3 \%$ |

## Pew Research Center Poll Results, March 17-27, 2016

## Question asked:

Regardless of who you currently support, I'd like to know what kind of president you think each of the following would be:

|  | Great | Good | Average | Poor | Terrible | Never <br> heard of |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| John Kasich | $5 \%$ | $28 \%$ | $39 \%$ | $13 \%$ | $7 \%$ | $9 \%$ |
| Bernie Sanders | $10 \%$ | $26 \%$ | $26 \%$ | $15 \%$ | $21 \%$ | $3 \%$ |
| Ted Cruz | $7 \%$ | $22 \%$ | $21 \%$ | $17 \%$ | $19 \%$ | $4 \%$ |
| Hillary Clinton | $11 \%$ | $22 \%$ | $20 \%$ | $16 \%$ | $30 \%$ | $1 \%$ |
| Donald Trump | $10 \%$ | $16 \%$ | $12 \%$ | $15 \%$ | $44 \%$ | $3 \%$ |


|  | $p$ | $\alpha \pm \max \{p, q\}$ | $q$ |
| :--- | :---: | :---: | :---: |
| John Kasich | $33 \%$ | Average+ | $29 \%$ |
| Bernie Sanders | $36 \%$ | Average- | $39 \%$ |
| Ted Cruz | $29 \%$ | Average- | $40 \%$ |
| Hillary Clinton | $33 \%$ | Average- | $47 \%$ |
| Donald Trump | $38 \%$ | Poor- | $47 \%$ |

Paradoxes Impossbilities Majority Judgment Theory From Practice Small Jury Large Electorate

## Pew Research center poll 2016, Presidential Election, USA

Clinton:

|  | Great | Good | Average | Poor | Terrible |
| :--- | :---: | :---: | :---: | :---: | :---: |
| January | $11 \%$ | $24 \%$ | $18 \%$ | $16 \%$ | $31 \%$ |
| Marsh | $11 \%$ | $22 \%$ | $20 \%$ | $16 \%$ | $31 \%$ |
| August | $11 \%$ | $20 \%$ | $22 \%$ | $12 \%$ | $35 \%$ |
| October | $8 \%$ | $27 \%$ | $20 \%$ | $11 \%$ | $34 \%$ |

Clinton:

|  | Great | Good | Average | Poor | Terrible |
| :--- | :---: | :---: | :---: | :---: | :---: |
| January | $11 \%$ | $24 \%$ | $18 \%$ | $16 \%$ | $31 \%$ |
| Marsh | $11 \%$ | $22 \%$ | $20 \%$ | $16 \%$ | $31 \%$ |
| August | $11 \%$ | $20 \%$ | $22 \%$ | $12 \%$ | $35 \%$ |
| October | $8 \%$ | $27 \%$ | $20 \%$ | $11 \%$ | $34 \%$ |

Trump:

|  | Great | Good | Average | Poor | Terrible |
| :--- | :---: | :---: | :---: | :---: | :---: |
| January | $11 \%$ | $20 \%$ | $12 \%$ | $14 \%$ | $43 \%$ |
| Marsh | $10 \%$ | $16 \%$ | $12 \%$ | $15 \%$ | $47 \%$ |
| August | $9 \%$ | $18 \%$ | $15 \%$ | $12 \%$ | $46 \%$ |
| October | $9 \%$ | $17 \%$ | $16 \%$ | $11 \%$ | $47 \%$ |

(1) Paradoxes

- Methods of Voting
- Paradoxes in Theory
- Paradoxes in Practice
(2)

In possbilities

- May's Axioms for Two Candidates
- Arrow's Impossibility TheoremMajority Judgment
- From Practice
- Small Jury
- Large Electorate
(4) Theory
- Domination Paradox
- Possibility
- Manipulation

Majority judgment:

## Majority judgment:

(1) permits voters to better express their opinions,

Majority judgment:
(1) permits voters to better express their opinions,
(2) always gives a transitif ranking of candidates (no Condorcet paradox),

Majority judgment:
(1) permits voters to better express their opinions,
(2) always gives a transitif ranking of candidates (no Condorcet paradox),
(3) order between two candidates depends only on them (no Arrow paradox),

Majority judgment:
(1) permits voters to better express their opinions,
(2) always gives a transitif ranking of candidates (no Condorcet paradox),
(3) order between two candidates depends only on them (no Arrow paradox),
(9) best combats voters' strategic manipulation, inciting honest opinions,

Majority judgment:
(1) permits voters to better express their opinions,
(2) always gives a transitif ranking of candidates (no Condorcet paradox),
(3) order between two candidates depends only on them (no Arrow paradox),
(9) best combats voters' strategic manipulation, inciting honest opinions,
(5) a candidate whose grades dominate another wins (no domination paradox).

Paradoxes Impossbilities Majority Judgment Theory Domination Paradox Possibility Manipulation

## Domination Paradox

National poll, 10 days before first-round, French presidential election, 2012.

## Domination Paradox

National poll, 10 days before first-round, French presidential election, 2012.
Merit profile:
$\left.\begin{array}{lccccccc} & \begin{array}{c}\text { Out- } \\ \text { standing }\end{array} & \begin{array}{c}\text { Excel- } \\ \text { lent }\end{array} & \begin{array}{c}\text { Very } \\ \text { Good }\end{array} & \text { Good } & \text { Accept- } & \text { able } & \text { Poor }\end{array} \begin{array}{c}\text { To } \\ \text { Reject }\end{array}\right]$

## Domination Paradox

National poll, 10 days before first-round, French presidential election, 2012.
Merit profile:

|  | Out- <br> standing | Excel- | Vent | Vory |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Good | Good | Accept- | able | Poor | Reject |  |  |
| Hollande: | $12.5 \%$ | $16.2 \%$ | $16.4 \%$ | $11.7 \%$ | $14.8 \%$ | $14.2 \%$ | $14.2 \%$ |
| Sarkozy: | $9.6 \%$ | $12.3 \%$ | $16.3 \%$ | $11.0 \%$ | $11.1 \%$ | $7.9 \%$ | $31.8 \%$ |

Possible opinion profile:

|  | $9.6 \%$ | $12.3 \%$ | $11.7 \%$ | $4.6 \%$ | $10.2 \%$ | $5.9 \%$ | $14.2 \%$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande: | Exc. | V.Good | Good | Accept. | Accept. | Poor | Rej. |
| Sarkozy: | Outs. | Exc. | V.Good | V.Good | Good | Accept. | Rej. |
|  | $0.8 \%$ | $5.2 \%$ | $6.5 \%$ | $1.4 \%$ | $5.2 \%$ | $4.1 \%$ | $8.3 \%$ |
| Hollande: | Outs. | Outs. | Outs. | Exc. | Exc. | V.Good | Poor |
| Sarkozy: | Good | Accept. | Poor | Poor | Rej. | Rej. | Rej. |

## Domination Paradox

National poll, 10 days before first-round, French presidential election, 2012.
Merit profile:

|  | Out- <br> standing | Excel- | Vent | Vory |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Good | Good | Accept- | able | Poor | Reject |  |  |
| Hollande: | $12.5 \%$ | $16.2 \%$ | $16.4 \%$ | $11.7 \%$ | $14.8 \%$ | $14.2 \%$ | $14.2 \%$ |
| Sarkozy: | $9.6 \%$ | $12.3 \%$ | $16.3 \%$ | $11.0 \%$ | $11.1 \%$ | $7.9 \%$ | $31.8 \%$ |

Possible opinion profile:

|  | $9.6 \%$ | $12.3 \%$ | $11.7 \%$ | $4.6 \%$ | $10.2 \%$ | $5.9 \%$ | $14.2 \%$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande: | Exc. | V.Good | Good | Accept. | Accept. | Poor | Rej. |
| Sarkozy: | Outs. | Exc. | V.Good | V.Good | Good | Accept. | Rej. |
|  | $0.8 \%$ | $5.2 \%$ | $6.5 \%$ | $1.4 \%$ | $5.2 \%$ | $4.1 \%$ | $8.3 \%$ |
| Hollande: | Outs. | Outs. | Outs. | Exc. | Exc. | V.Good | Poor |
| Sarkozy: | Good | Accept. | Poor | Poor | Rej. | Rej. | Rej. |

Majority Rule: Sarkozy: 54.3\% Hollande: 31.5\% Indifferent: 14.2\%

Paradoxes Impossbilities Majority Judgment Theory Domination Paradox Possibility Manipulation

## Dahl's Intensity Problem

Dahl in A Preface to Democratic Theory (1956) first recognised the problem:

## Dahl's Intensity Problem

Dahl in A Preface to Democratic Theory (1956) first recognised the problem:

- "What if the minority prefers its alternative much more passionately than the majority prefers a contrary alternative?"


## Dahl's Intensity Problem

Dahl in A Preface to Democratic Theory (1956) first recognised the problem:

- "What if the minority prefers its alternative much more passionately than the majority prefers a contrary alternative?"
- "Does the majority principle still make sense?"


## Dahl's Intensity Problem

Dahl in A Preface to Democratic Theory (1956) first recognised the problem:

- "What if the minority prefers its alternative much more passionately than the majority prefers a contrary alternative?"
- "Does the majority principle still make sense?"
- "If there is any case that might be considered the modern analogue to Madison's implicit concept of tyranny, I suppose it is this one."


## Dahl's Intensity Problem

Dahl in A Preface to Democratic Theory (1956) first recognised the problem:

- "What if the minority prefers its alternative much more passionately than the majority prefers a contrary alternative?"'
- "Does the majority principle still make sense?"
- "If there is any case that might be considered the modern analogue to Madison's implicit concept of tyranny, I suppose it is this one."
- To solve the problem, Dahl proposes using "an ordinal intensity scale" obtained "simply by reference to some observable response, such as a statement of one's feelings."


## May + Arrow's IIA + Condorcet's Transitivity + Dahl's Intensity Scale

A method of ranking $\succeq$ is a binary relation that compares any two candidates. It must satisfy the following axioms:

- A0* [Based on measures] A voter's opinion is expressed by evaluating each candidate in an ordinal intensity scale of grades $\Gamma$.


## May + Arrow's IIA + Condorcet's Transitivity + Dahl's Intensity Scale

A method of ranking $\succeq$ is a binary relation that compares any two candidates. It must satisfy the following axioms:

- A0* [Based on measures] A voter's opinion is expressed by evaluating each candidate in an ordinal intensity scale of grades $\Gamma$.
- A1 [Unrestricted Domain] All voter's opinions are admissible.
- A2 [Anonymous] Permuting names of voters does not change the outcome.
- A3 [Neutral] Permuting names of candidates does not change the outcome.
- A4 [Monotone] If $A \succeq B$ and $A$ 's grades are raised, then $A \succ B$.
- A5 [Complete] For any two candidates either $A \succeq B$ or $A \preceq B$.


## May + Arrow's IIA + Condorcet's Transitivity + Dahl's Intensity Scale

A method of ranking $\succeq$ is a binary relation that compares any two candidates. It must satisfy the following axioms:

- A0* [Based on measures] A voter's opinion is expressed by evaluating each candidate in an ordinal intensity scale of grades $\Gamma$.
- A1 [Unrestricted Domain] All voter's opinions are admissible.
- A2 [Anonymous] Permuting names of voters does not change the outcome.
- A3 [Neutral] Permuting names of candidates does not change the outcome.
- A4 [Monotone] If $A \succeq B$ and $A$ 's grades are raised, then $A \succ B$.
- A5 [Complete] For any two candidates either $A \succeq B$ or $A \preceq B$.
- A6 [Transitive] If $A \succeq B$ and $B \succeq C$ then $A \succeq C$.


## May + Arrow's IIA + Condorcet's Transitivity + Dahl's Intensity Scale

A method of ranking $\succeq$ is a binary relation that compares any two candidates.
It must satisfy the following axioms:

- A0* [Based on measures] A voter's opinion is expressed by evaluating each candidate in an ordinal intensity scale of grades $\Gamma$.
- A1 [Unrestricted Domain] All voter's opinions are admissible.
- A2 [Anonymous] Permuting names of voters does not change the outcome.
- A3 [Neutral] Permuting names of candidates does not change the outcome.
- A4 [Monotone] If $A \succeq B$ and $A$ 's grades are raised, then $A \succ B$.
- A5 [Complete] For any two candidates either $A \succeq B$ or $A \preceq B$.
- A6 [Transitive] If $A \succeq B$ and $B \succeq C$ then $A \succeq C$.
- A7 [Independence of irrelevant alternatives (IIA)] If $A \succeq B$ then whatever candidates are dropped or adjoined $A \succeq B$.

Paradoxes Impossbilities Majority Judgment Theory $\quad$ Domination Paradox Possibility Manipulation

## Possibility Theorems

## Theorem

Infinitely many methods, based on measures, satisfy axioms A1 to A7. All depend only on the merit profile and avoids the domination paradox.

## Possibility Theorems

## Theorem

Infinitely many methods, based on measures, satisfy axioms A1 to A7. All depend only on the merit profile and avoids the domination paradox.

In this infinity, majority judgment is the best resisting manipulations.

## Theorem

No method based on measures and satisfying axioms A1 to $A 7$ is strategy proof.

## Possibility Theorems

## Theorem

Infinitely many methods, based on measures, satisfy axioms A1 to A7. All depend only on the merit profile and avoids the domination paradox.

In this infinity, majority judgment is the best resisting manipulations.

## Theorem

No method based on measures and satisfying axioms A1 to $A 7$ is strategy proof. majority-gauge is partially strategy proof,

## Possibility Theorems

## Theorem

Infinitely many methods, based on measures, satisfy axioms A1 to A7. All depend only on the merit profile and avoids the domination paradox.

In this infinity, majority judgment is the best resisting manipulations.

## Theorem

No method based on measures and satisfying axioms A1 to A7 is strategy proof. majority-gauge is partially strategy proof, and is the unique strategy proof on the domain of polarized pairs.

How could voters that prefer Sarkozy to Holland manipulate ?

|  | Outs. | Exc. | V.Good | Good | Fair | Poor | Rej. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |
| Sarkozy | $9.63 \%$ | $12.35 \%$ | $16.28 \%$ | $10.99 \%$ | $11.13 \%$ | $7.87 \%$ | $31.75 \%$ |

Majority-gauges:
Holland (45.05\%, Good +,43.28\%) Sarkozy (49.25\%,Fair,$+ 39.62 \%$ )

How could voters that prefer Sarkozy to Holland manipulate ?

|  | Outs. | Exc. | V.Good | Good | Fair | Poor | Rej. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |
| Sarkozy | $9.63 \%$ | $12.35 \%$ | $16.28 \%$ | $10.99 \%$ | $11.13 \%$ | $7.87 \%$ | $31.75 \%$ |

Majority-gauges:
Holland (45.05\%, Good+,43.28\%) Sarkozy (49.25\%,Fair+,39.62\%)
40.31\% prefer Sarkozy to Hollande*. They are of three types:

- 1. Sarkozy $\succeq$ Good,

Hollande $\preceq$ Fair
(76.09\%),

- 2. Hollande $\succeq$ Good, so

Sarkozy $\succeq$ Very Good (19.20\%),

- 3. Sarkozy $\preceq$ Fair, so

Hollande $\preceq$ Poor (4.71\%).

## How could voters that prefer Sarkozy to Holland manipulate?

|  | Outs. | Exc. | V.Good | Good | Fair | Poor | Rej. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |
| Sarkozy | $9.63 \%$ | $12.35 \%$ | $16.28 \%$ | $10.99 \%$ | $11.13 \%$ | $7.87 \%$ | $31.75 \%$ |

Majority-gauges:
Holland (45.05\%, Good+,43.28\%) Sarkozy (49.25\%,Fair+,39.62\%)
40.31\% prefer Sarkozy to Hollande*. They are of three types:

- 1. Sarkozy $\succeq$ Good,

Hollande $\preceq$ Fair
(76.09\%),

- 2. Hollande $\succeq$ Good, so

Sarkozy $\succeq$ Very Good (19.20\%),

- 3. Sarkozy $\preceq$ Fair, so

Hollande $\preceq$ Poor (4.71\%).

How can they manipulate?

## How could voters that prefer Sarkozy to Holland manipulate ?

|  | Outs. | Exc. | V.Good | Good | Fair | Poor | Rej. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |
| Sarkozy | $9.63 \%$ | $12.35 \%$ | $16.28 \%$ | $10.99 \%$ | $11.13 \%$ | $7.87 \%$ | $31.75 \%$ |

Majority-gauges:
Holland (45.05\%, Good+,43.28\%) Sarkozy (49.25\%,Fair+,39.62\%)
40.31\% prefer Sarkozy to Hollande*. They are of three types:

- 1. Sarkozy $\succeq$ Good,

Hollande $\preceq$ Fair
(76.09\%),

- 2. Hollande $\succeq$ Good, so

Sarkozy $\succeq$ Very Good (19.20\%),

- 3. Sarkozy $\preceq$ Fair, so

Hollande $\preceq$ Poor (4.71\%).

How can they manipulate? Up Sarkozy's grade to Outstanding, down Hollande's to To Reject.

## How could voters that prefer Sarkozy to Holland manipulate ?

|  | Outs. | Exc. | V.Good | Good | Fair | Poor | Rej. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |
| Sarkozy | $9.63 \%$ | $12.35 \%$ | $16.28 \%$ | $10.99 \%$ | $11.13 \%$ | $7.87 \%$ | $31.75 \%$ |

Majority-gauges:
Holland (45.05\%, Good+,43.28\%) Sarkozy (49.25\%,Fair+,39.62\%)
40.31\% prefer Sarkozy to Hollande*. They are of three types:

- 1. Sarkozy $\succeq$ Good,

Hollande $\preceq$ Fair
(76.09\%),

- 2. Hollande $\succeq$ Good, so

Sarkozy $\succeq$ Very Good (19.20\%),

- 3. Sarkozy $\preceq$ Fair, so

Hollande $\preceq$ Poor (4.71\%).

How can they manipulate? Up Sarkozy's grade to Outstanding, down Hollande's to To Reject. Effect?

## How could voters that prefer Sarkozy to Holland manipulate ?

|  | Outs. | Exc. | V.Good | Good | Fair | Poor | Rej. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |
| Sarkozy | $9.63 \%$ | $12.35 \%$ | $16.28 \%$ | $10.99 \%$ | $11.13 \%$ | $7.87 \%$ | $31.75 \%$ |

Majority-gauges:
Holland (45.05\%, Good+,43.28\%) Sarkozy (49.25\%,Fair+,39.62\%)
40.31\% prefer Sarkozy to Hollande*. They are of three types:

- 1. Sarkozy $\succeq$ Good, Hollande $\preceq$ Fair (76.09\%),
- 2. Hollande $\succeq$ Good, so Sarkozy $\succeq$ Very Good (19.20\%),
- 3. Sarkozy $\preceq$ Fair, so Hollande $\preceq$ Poor (4.71\%).

How can they manipulate? Up Sarkozy's grade to Outstanding, down Hollande's to To Reject. Effect?

- 1. Cannot increase Sarkozy's gauge, cannot decrease Hollande's.


## How could voters that prefer Sarkozy to Holland manipulate?

|  | Outs. | Exc. | V.Good | Good | Fair | Poor | Rej. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |
| Sarkozy | $9.63 \%$ | $12.35 \%$ | $16.28 \%$ | $10.99 \%$ | $11.13 \%$ | $7.87 \%$ | $31.75 \%$ |

Majority-gauges:
Holland (45.05\%, Good+,43.28\%) Sarkozy (49.25\%,Fair+,39.62\%)
40.31\% prefer Sarkozy to Hollande*. They are of three types:

- 1. Sarkozy $\succeq$ Good,

Hollande $\preceq$ Fair
(76.09\%),

- 2. Hollande $\succeq$ Good, so Sarkozy $\succeq$ Very Good (19.20\%),
- 3. Sarkozy $\preceq$ Fair, so

Hollande $\preceq$ Poor (4.71\%).

How can they manipulate? Up Sarkozy's grade to Outstanding, down Hollande's to To Reject. Effect?

- 1. Cannot increase Sarkozy's gauge, cannot decrease Hollande's.
- 2. Can decrease Hollande's, cannot increase Sarkozy's (motivation?),


## How could voters that prefer Sarkozy to Holland manipulate?

|  | Outs. | Exc. | V.Good | Good | Fair | Poor | Rej. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |
| Sarkozy | $9.63 \%$ | $12.35 \%$ | $16.28 \%$ | $10.99 \%$ | $11.13 \%$ | $7.87 \%$ | $31.75 \%$ |

Majority-gauges:
Holland (45.05\%, Good+,43.28\%) Sarkozy (49.25\%,Fair+,39.62\%)
40.31\% prefer Sarkozy to Hollande*. They are of three types:

- 1. Sarkozy $\succeq$ Good,

Hollande $\preceq$ Fair
(76.09\%),

- 2. Hollande $\succeq$ Good, so

Sarkozy $\succeq$ Very Good (19.20\%),

- 3. Sarkozy $\preceq$ Fair, so

Hollande $\preceq$ Poor (4.71\%).

How can they manipulate? Up Sarkozy's grade to Outstanding, down Hollande's to To Reject. Effect?

- 1. Cannot increase Sarkozy's gauge, cannot decrease Hollande's.
- 2. Can decrease Hollande's, cannot increase Sarkozy's (motivation?),
- 3. Can increase Sarkozy's, cannot decrease Hollande's (motivation?).


## How could voters that prefer Sarkozy to Holland manipulate ?

|  | Outs. | Exc. | V.Good | Good | Fair | Poor | Rej. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |
| Sarkozy | $9.63 \%$ | $12.35 \%$ | $16.28 \%$ | $10.99 \%$ | $11.13 \%$ | $7.87 \%$ | $31.75 \%$ |

Majority-gauges:
Holland (45.05\%, Good+,43.28\%) Sarkozy (49.25\%,Fair+,39.62\%)
40.31\% prefer Sarkozy to Hollande*. They are of three types:

- 1. Sarkozy $\succeq$ Good, Hollande $\preceq$ Fair (76.09\%),
- 2. Hollande $\succeq$ Good, so Sarkozy $\succeq$ Very Good (19.20\%),
- 3. Sarkozy $\preceq$ Fair, so Hollande $\preceq$ Poor (4.71\%).

How can they manipulate? Up Sarkozy's grade to Outstanding, down Hollande's to To Reject. Effect?

- 1. Cannot increase Sarkozy's gauge, cannot decrease Hollande's.
- 2. Can decrease Hollande's, cannot increase Sarkozy's (motivation?),
- 3. Can increase Sarkozy's, cannot decrease Hollande's (motivation?).


## Theorem

If a voter can manipulate MJ, he can only in one direction:

## How could voters that prefer Sarkozy to Holland manipulate ?

|  | Outs. | Exc. | V.Good | Good | Fair | Poor | Rej. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollande | $12.48 \%$ | $16.15 \%$ | $16.42 \%$ | $11.67 \%$ | $14.79 \%$ | $14.25 \%$ | $14.24 \%$ |
| Sarkozy | $9.63 \%$ | $12.35 \%$ | $16.28 \%$ | $10.99 \%$ | $11.13 \%$ | $7.87 \%$ | $31.75 \%$ |

Majority-gauges:
Holland (45.05\%, Good +,43.28\%) Sarkozy (49.25\%,Fair,$+ 39.62 \%$ )
40.31\% prefer Sarkozy to Hollande*. They are of three types:

- 1. Sarkozy $\succeq$ Good, Hollande $\preceq$ Fair (76.09\%),
- 2. Hollande $\succeq$ Good, so Sarkozy $\succeq$ Very Good (19.20\%),
- 3. Sarkozy $\preceq$ Fair, so Hollande $\preceq$ Poor (4.71\%).

How can they manipulate? Up Sarkozy's grade to Outstanding, down Hollande's to To Reject. Effect?

- 1. Cannot increase Sarkozy's gauge, cannot decrease Hollande's.
- 2. Can decrease Hollande's, cannot increase Sarkozy's (motivation?),
- 3. Can increase Sarkozy's, cannot decrease Hollande's (motivation?).


## Theorem

If a voter can manipulate MJ, he can only in one direction:
(1) or he can increase the majority-gauge of a candidate he prefers to the other,
(2) or he can decrease the majority-gauge of the other candidate.

Suppose:

- Type 1's up Sarkozy's grade to Outstanding, down Hollande's to To Reject,
- Types 2 \& 3 "sufficiently motivated" (grades differ by at least two) do same.

Suppose:

- Type 1's up Sarkozy's grade to Outstanding, down Hollande's to To Reject,
- Types 2 \& 3 "sufficiently motivated" (grades differ by at least two) do same.
$\Rightarrow 86.21 \%$ manipulate among those who prefer Sarkozy to Hollande.

Suppose:

- Type 1's up Sarkozy's grade to Outstanding, down Hollande's to To Reject,
- Types 2 \& 3 "sufficiently motivated" (grades differ by at least two) do same.
$\Rightarrow 86.21 \%$ manipulate among those who prefer Sarkozy to Hollande.
Manipulation fails, Hollande still leads Sarkozy:
$\star$ Hollande's gauge $(45.05 \%$, Good,$+ 43.28 \%) \searrow(44.64 \%$, Good,$- 46.95 \%)$
$\star$ Sarkozy's gauge (49.25\%,Fair,$+ 39.62 \%) ~ \nearrow(49.66 \%$, Fair,$+ 39.62 \%)$

Suppose:

- Type 1's up Sarkozy's grade to Outstanding, down Hollande's to To Reject,
- Types 2 \& 3 "sufficiently motivated" (grades differ by at least two) do same.
$\Rightarrow 86.21 \%$ manipulate among those who prefer Sarkozy to Hollande.
Manipulation fails, Hollande still leads Sarkozy:
$\star$ Hollande's gauge $(45.05 \%$, Good,$+ 43.28 \%) \searrow(44.64 \%$, Good-, $46.95 \%)$
$\star$ Sarkozy's gauge (49.25\%,Fair+,39.62\%) Ø (49.66\%,Fair+,39.62\%)
With P-S (Outs. gives 6 points, Exc. 5, ..., Poor 1, Rej. 0)*, manipulation successful:


## What if some motivated voters indeed manipulate ?

Suppose:

- Type 1's up Sarkozy's grade to Outstanding, down Hollande's to To Reject,
- Types 2 \& 3 "sufficiently motivated" (grades differ by at least two) do same.
$\Rightarrow 86.21 \%$ manipulate among those who prefer Sarkozy to Hollande.
Manipulation fails, Hollande still leads Sarkozy:
$\star$ Hollande's gauge (45.05\%,Good+,43.28\%) $\searrow(44.64 \%$, Good,$- 46.95 \%)$
$\star$ Sarkozy's gauge (49.25\%,Fair+,39.62\%) 冗 (49.66\%,Fair+,39.62\%)
With P-S (Outs. gives 6 points, Exc. 5, ..., Poor 1, Rej. 0)*, manipulation successful:

Before manipulation:
Hollande's average 3.00
Sarkozy's average 2.48

## What if some motivated voters indeed manipulate ?

Suppose:

- Type 1's up Sarkozy's grade to Outstanding, down Hollande's to To Reject,
- Types 2 \& 3 "sufficiently motivated" (grades differ by at least two) do same.
$\Rightarrow 86.21 \%$ manipulate among those who prefer Sarkozy to Hollande.
Manipulation fails, Hollande still leads Sarkozy:
$\star$ Hollande's gauge (45.05\%,Good+,43.28\%) $\searrow(44.64 \%$, Good,$- 46.95 \%)$
$\star$ Sarkozy's gauge (49.25\%,Fair+,39.62\%) 冗 (49.66\%,Fair+,39.62\%)
With P-S (Outs. gives 6 points, Exc. 5, ..., Poor 1, Rej. 0)*, manipulation successful:

Before manipulation:
Hollande's average 3.00 Sarkozy's average 2.48
After identical manipulation:
Hollande's average 2.56
Sarkozy's average 2.94

Paradoxes Impossbilities Majority Judgment Theory Domination Paradox Possibility Manipulation

## Conclusion

- MJ allows voter to better express their opinions.
- MJ allows voter to better express their opinions.
- MJ is the unique that avoids Arrow and Condorcet paradoxes and best resists strategic manipulation.
- MJ allows voter to better express their opinions.
- MJ is the unique that avoids Arrow and Condorcet paradoxes and best resists strategic manipulation.
- MJ improves methods used in practice (diving, skating, gymnastic).
- MJ allows voter to better express their opinions.
- $M J$ is the unique that avoids Arrow and Condorcet paradoxes and best resists strategic manipulation.
- MJ improves methods used in practice (diving, skating, gymnastic).
- It has been used to higher professors in several universities (Santiago, Ecole Polytechnique, Montpellier, Paris Dauphine), and associations (Eco-Festival, Nieman Fellows at Harvard University).
- MJ allows voter to better express their opinions.
- MJ is the unique that avoids Arrow and Condorcet paradoxes and best resists strategic manipulation.
- MJ improves methods used in practice (diving, skating, gymnastic).
- It has been used to higher professors in several universities (Santiago, Ecole Polytechnique, Montpellier, Paris Dauphine), and associations (Eco-Festival, Nieman Fellows at Harvard University).
- Terra Nova (a left think tank), Nouvelle Donne (a centrist political party), and Fabrique Spinoza (a right think tank) have included MJ in their recommendations for reforming the electoral system in France.
- MJ allows voter to better express their opinions.
- MJ is the unique that avoids Arrow and Condorcet paradoxes and best resists strategic manipulation.
- MJ improves methods used in practice (diving, skating, gymnastic).
- It has been used to higher professors in several universities (Santiago, Ecole Polytechnique, Montpellier, Paris Dauphine), and associations (Eco-Festival, Nieman Fellows at Harvard University).
- Terra Nova (a left think tank), Nouvelle Donne (a centrist political party), and Fabrique Spinoza (a right think tank) have included MJ in their recommendations for reforming the electoral system in France.
- LaPrimaire.org used MJ to select its "candidat citoyen" for the 2017 French presidential election where 33.000 person voted electronically.


## Conclusion

- MJ allows voter to better express their opinions.
- MJ is the unique that avoids Arrow and Condorcet paradoxes and best resists strategic manipulation.
- MJ improves methods used in practice (diving, skating, gymnastic).
- It has been used to higher professors in several universities (Santiago, Ecole Polytechnique, Montpellier, Paris Dauphine), and associations (Eco-Festival, Nieman Fellows at Harvard University).
- Terra Nova (a left think tank), Nouvelle Donne (a centrist political party), and Fabrique Spinoza (a right think tank) have included MJ in their recommendations for reforming the electoral system in France.
- LaPrimaire.org used MJ to select its "candidat citoyen" for the 2017 French presidential election where 33.000 person voted electronically.
- The political party Generation.s adopted majority judgement in 2018.


## Conclusion

- MJ allows voter to better express their opinions.
- MJ is the unique that avoids Arrow and Condorcet paradoxes and best resists strategic manipulation.
- MJ improves methods used in practice (diving, skating, gymnastic).
- It has been used to higher professors in several universities (Santiago, Ecole Polytechnique, Montpellier, Paris Dauphine), and associations (Eco-Festival, Nieman Fellows at Harvard University).
- Terra Nova (a left think tank), Nouvelle Donne (a centrist political party), and Fabrique Spinoza (a right think tank) have included MJ in their recommendations for reforming the electoral system in France.
- LaPrimaire.org used MJ to select its "candidat citoyen" for the 2017 French presidential election where 33.000 person voted electronically.
- The political party Generation.s adopted majority judgement in 2018.
- An association MieuxVoter has been created in 2018 to promote MJ.


## Mieux Voter

## Choisir • Élire • Décider

## Avec le Jugement Majoritaire

|  |  | - | - | -mem | - | Tman | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 삿 |  |  |  |  | x |  |  |
| 앙 |  |  |  | x |  |  |  |
| 앙 | x |  |  |  |  |  |  |

## Notre Constat

Chaque jour, nous prenons des décisions en commun. Mais les méthodes que nous utilisons sont souvent inadaptées et ne permettent pas de traduire fidèlement la volonté de la majorité.

Notre Action
Agir pour faire connaitre le Jugement Majoritaire et accompagner les collectivités publiques, les entreprises, les associations et les particuliers dans son utilisation.


## ET SI ON CONTINUAIT À EXPÉRIMENTER UN NOUVEAU MODE DE SCRUTIN?

Le deuxième tour de l'élection présidentielle au Jugement Majoritaire

Les votes sont clos, cliquez-ici pour voir les résultats.
52809 votes ont été comptabilisés au 1er tour et 15251 au 2nd tour

```
f PARTAGER SUR FACEBOOK
```

```
V PARTAGER SUR TWITTER
```

$\equiv$ - YouTube

Réformons l'élection présidentielle ! - Science étonnante \#35
709972 vues


$$
314
$$



IInnmanite

LECTURE AUTO
a Relativité Géné - Science étonnar ScienceEtonnante
194 k vues
Nouveau

Rachmaninoff: Pia no. 2 op. 18 - Anna
AVROTROS Klassiel
Recommandée pou

The Best of Classi 1- Mozart, Bach, Be

Live Better Media © Recommandée pour

TCHAIKOVSKY - T GREATEST HITS MELOMAN CLASSIC Recommandée pou

Stravinsky: The Fir Gergiev - Vienna P Jose
Recommandée pou

Science étonnante

- Arrow, Kenneth J. 1951. Social Choice and Individual Values. Yale University Press.
- Balinski M. and R. Laraki 2018. Majority Judgment vs Approval Voting. Preprint
- and —. 2017. Majority Judgment vs Majority Rule. Preprint
- — and —. 2014. "Judge: Don't vote!" Operations Research.
- and —. 2011. Majority Judgment: Measuring, Ranking, and Electing. MIT Press.
- and —. 2007. A Theory of Measuring, Electing, and Ranking. PNAS USA.

Brams, Steven J. and Peter C. Fishburn. 1983. Approval Voting. Boston: Birkhäuser.

- Dasgupta, P., and E. Maskin. 2008. "On the robustness of majority rule." Journal of the European Economics Association, 6, 949-973.
- Miller G. A. 1956. "The magical number seven, plus or minus 2: Some limits on our capacity for processing information." Psychological Review, 63, 81-7.
- Moulin Hervé. 1988. Axioms of Cooperative Decision-Making. Cambridge University Press.
- Terra Nova. 2011. "Rendre les élections aux lecteurs: le jugement majoritaire," http://www.tnova.fr/note/rendre-les- lections-aux-lecteurs-le-jugement-majoritaire

