
Fault	tolerance	in	dynamic	
distributed	systems

Pierre	Sens

Delys Team
LIP6	(Sorbonne	Université/CNRS),	Inria	Paris

Pierre.Sens@lip6.fr

1

Outline

• Fundamental	abstractions	for	distributed	algorithms

• Modeling	dynamic	systems

• Fault	tolerant	algorithms	in	dynamics	systems	:	some	results	
and	open	issues

2

Agreement	problems

• Fondamental	abstraction	to	build reliable services	

agreement	on	order	of	operations
3

State	
machine	
replication

C1

C2

C3

A

B

C

Agreement

ABC

ABC

ABC

Agreement	problems:	consensus

Initially 1 value proposed by each process

Eventually
Every correct process decided
the same proposed value

5

2

8

9

1

6
5

5

5

5

5

5

Validity: Any value decided is a value proposed

Agreement: No two correct processes decide
differently

Termination: Every correct process eventually
decides

4

Other	agreement	problems
all	correct	processes	try	to	agree	on	some	set	of	
proposed	values

• k-set	agreement	
• Agreement:	At	most	k	values	are	decided.
• Validity:	Every	value	decided	must	have	been	proposed.
• Termination:	Eventually,	every	correct	process		decides.

Generalization	of	consensus	(k=1)

• set	agreement:	k=n-1

5

Traditional	assumptions

• Connectivity
– Õ =	{p1,p2,	..,	pn}	known	processes
– n	processes	strongly	connected	(no	partition)

• Time
– Synchronous links	(known bound	on	transmission	
delays)

– Asynchronous links	(no	bound)

• Failures
– Crash,	recovery,	Byzantine

6

A	fundamental	result
• “Impossibility	to	solve	deterministically	the	
consensus in	a	asynchronous	networks	with	only 1	
crash	failure”	[Fischer-Lynch-Paterson	85]

• The	idea:	impossible	to	distinguish	faulty	hosts	from	
slow	ones

7

1 1 0 1 1 0 0

?

Circumvent	FLP	impossibility
4	approaches:

– Probabilistic	(probabilistic	consensus,	e.g.,	Ben-Or)
• Possibly	no	termination	

– k-agreement	
• A	relaxed	consensus	(may	output	k	different	values)

– Partial	synchrony
• Add	assumptions	on	the	network
• Eg,	There	is	an	unknown	bound	on	the	transmission	delay	

– Unreliable	failure	detectors	

8

Unreliable	failure	detectors	

• Introduced	in	the	beginning	of	90’s	by	
Chandra	and	Toueg

• Failure	detector	=	an	oracle	per	node
• Oracles	provide	lists	of	hosts	

suspected to	have	crashed
=>	possibly	false	detections

p

rq

ts

u

s

s

s

s

s

s

SLOW

r

r

r

9

System	model

• n processes	π={p1,	.	.	.	,pn}
• Processes	communicate	by	message	passing
• Fully	connected	asynchronous	network
• Reliable	channels
• Processes	may	crash (processes	that	do	not	
crash	are	called	correct)

• The	system	is	enhanced	with	failure	detectors

10

Properties	of	FD

Accuracy
Strong Weak Eventually strong Eventually Weak

Strong completeness Perfect
P

Strong
S ◊ P ◊S

• Strong	Completeness:	
– Eventually	every	process	that	crashes	is	permanently	suspected	by	every

correct	process
• Accuracy:	

– [Eventual]	Strong:	[There	is	a	time	after	which]	correct	processes	are	not	
suspected	by	any	correct	processes

– [Eventual]	Weak:		[There	is	a	time	after	which]	some correct	processes	are	
not	suspected	by	any	correct	proc

11

Variantes	:	Eventual	leader

Ω	:	Output	only	one	trusted	process,	the	
eventual	leader

The	leader	is	eventually	the	same	correct	
process	for	every	correct	process

12

Weakest	failure	detectors	

• Introduced	by	Chandra,	Hadzilacos and	Toueg
• A	weakest	failure	detector	D	for	a	problem	P	has	
to	be	:
– Sufficient:	with	D	it	is	possible	to	solve	P
– Necessary:	every	other	sufficient	FD	D’	is	stronger	
than	D	(D’	can	emulate	D)	

Ω	and	◊S	are	the	weakest	FD	to	solve	consensus	
with	a	majority	of	correct	processes	(eg.	Paxos)

=>	Ω	and	◊S	are	equivalent

13

Consensus	on	weakest	FD

• Paxos

14

1 1

2

n

.

.

.

(“accept”, á1,1ñ ,v1)

1

2

n

.

.

.

1 1

2

n

.

.

.

(“prepare”, á1,1ñ)

(“ack”, á1,1ñ, á0,0ñ,^)

decide v1

(“accept”, á1,1ñ ,v1)

W = 1

Some	weakest	FD	results

Consensus k-set
agreement

set	
agreement

Eventual	
consistency

Shared
memory

Ω
[LH94]

k-anti-Ω
[GK09]

anti-Ω
[Z10]

Message	
passing

(Ω,Σ)
[DFG10] ? L

[DFGT08]

Ω
[DKGPS15]

Problems

Models

15

Implementation	:	Fault-tolerant	
Architecture

16

Implementation	of	FDs

17

Process
Consensus

FD

Partial	synchronous	links

Asynchronous	links

Process
Consensus

FD

Additional	assumptions

• Assumptions	on	transmission	delay	∆	and	relative	
process	speed	δ	

• Partial	synchrony	[DLS88] timer	approach
1. Either	∆	(δ)	is	known	but	holds	only	eventually,	or	
2. ∆	(δ)	exists	but	is	not	known.

• Relative	speed	[MMR03]	 timer-free	approach
– Constraints	on	the	message	pattern	(message	delivery	
order)

– e.g.,	some	processes	always	response	among	the	first	
ones

18

Limits	of	current	implementations

• Many	implementations	of	FD	target	static systems
– Membership		and	topology	are	known

• Scalability	

19

Distributed	systems	are	more	and	
more	dynamic

• In	2021,	mobile	devices	will	account	for	a	half	of	
global	internet	traffic

20

2016 2021

Edge	computing	and	IoT	emerging	

21

New	distributed	architectures

22

Clouds
Datacenters	
(DC)

Gateways
Fog

PC,	Smart	IoT	
devices,	Sensors,	Tags

Highly dynamic networks

Egde and local datacenters

Remote datacenters

Features	of	large	and	dynamic	distributed	
systems

• Asynchronous network
– No	bound	on	transmission	delays	

• Huge number	of	resources	
– >1M	nodes

• Dynamicity
– Churn:	Permanent	arrival	and	leave	of	nodes
– Mobility:	Devices,	virtual	machines	…	can	move	or	migrate
– High	failure	rate,	failure	=	common	event

• “Chaotic”	systems	with	no	global	state

23

Models	for	dynamic	systems

• Toward more	dynamics :	Infinite arrival
models
– Processes	can	be	up	or	down
– The	number	of	up	processes	in	any	interval	of	
time	is	upperly bounded	by	a	known	constant	C

• Dynamic networks	:	dynamic graphs

24

G0 G1 G2 G3

G = G0,G1,G2,G3,…Gi,…, i ∈ ℕ

[B. Bui-Xuan, A. Ferreira, A. Jarry, JFCS 2003]

[A. Casteigts, P. Flocchini, W.
Quattrociocchi, N. Santoro, 2012]

[0,1)

Graph	Representation
• Sequence Based

• Time	varying graphs	(TVG)

G	=	(V,	E),	lifetime	𝒯
‣ Presence	function	𝜚 :	E	× 𝒯→	{0,1}

‣ +	other	functions	(latency,	node	presence,	…)
© A. Casteigts 25

TVG:	Basic	Properties

• Temporal	path	(a.k.a Journey),	e.g.,	a	↝ e
a	↝ *,		b	↝ *,		c	↝ *,	d	↝ *,	except	e!

• 1	↝ *		 ∃u	∈ V,	∀v	∈ V,	u	↝ v

• *	↝ 1 ∀u	∈ V,	∃v	∈ V,	u	↝ v

• *	↝ * ∀u,	v	∈ V,	u	↝ v

[0,1)

a

b

c

d

e

26

TVG:	Classes
• u	↝ v			- Periodic	journey
• u	↝ v			- Bounded	journey
• u	↝ v			- Recurrent	journey

P

B

R

© CasteigtsWhat assumption for what problems ?

Edge/Path recurrence no recurrence

27

Eventual	Leader	Election
in	Dynamic	Environments

Luciana	Arantes1,	Fabiola Greve2,	Véronique
Simon1,	and	Pierre	Sens1

LIP6,	Inria,	France1

Federal	University	of	Bahia	(UFBA),	Brazil	2

28

Eventual	leader	election	
(Ω : omega	failure	detector)

• The	Ω failure	detector	satisfies	(“eventual	leader	election”):

– there	is	a	time	after	which	every	correct	process	always	trusts	the	same	
correct	process

p1

p3

p4 p5

p2

Ω=p2

Ω=p2

Ω=p2

correct

crashed

29

• Dynamic	self-organized	systems
– Multi-hop	networks		(e.g.	wireless	ad-hoc	networks)				

• broadcast	/receive	messages	to/from	neighbors	within	transmission	
range

• Communication	
– Channels	are	fair-lossy
– there	is	no	message	duplication,	modification	or	creation

• The	system	is	asynchronous
– There	are	no	assumptions	on	the	relative	speed	of	processes	nor	on	

message	transfer	delays.
• Failure	model	:	crashes
• The	membership	is	unknown	

– A	node	is	not	aware	about		the	set	of	nodes	nor	the	number	of	them.
• Nodes	have	partial	view	of	the	network

Context

30

Dynamics	of	the	network
• Dynamic	changing	topology

– join/leave	of	nodes,	
– mobility	of	nodes,	failure	of	nodes	(crash)
– Finite	arrival	model

• The	network	is	dynamically	composed	of	infinite	mobile	nodes,	but	
each	run	consist	of	a	finite	set	of	n	nodes.	

31

Processes	status	and	network	connectivity

• Two	sets	of	nodes:
– STABLE	(correct):	nodes	eventually	and	

permanently	correct	
– FAULTY:	nodes	which	crash	

• Network	connectivity	
– Eventually,	the	TVG	is	connected	over	the	time

• There	exists	a	journey	between	all	stable	nodes	at	
any	time

• Network	recurrent	connectivity		(class *↝ *)		

Transmission	
range

mobile	
node

Stable	
node

32

R

An	Eventual	Leader	Election	Algorithm

• Principle
– Election	of	a	leader	process	based	on	punishment

• Round	counter	to	control	the	freshness	of	the	information
– Periodic	local	query-response	exchange

• Wait	for	a responses
– If	q is locally	known	by	p,	has	not	moved,	and	does	not	respond	
to	a	query	of	p among	ap first	responses,	q is	punished	by	p.	

q	not	punished

q	punished

q	not	punishedWaiting	for	ap responses

…N
ei
gh
bo

rh
oo

d	

ap

p

r

q

33

Implementation	of	W on	dynamic	networks

• Each	node	maintains	3	sets:
– local_known:	the	current	knowledge	about	its	neighborhood

– global_known:	the	current	knowledge	about	the	membership	of	the	
system

– punish:	a	set	of	tuples	<punish	counter,	node	id>

leader:	the	process	with	the	smallest	counter	in	punish	set

• Diffusion	of	information	over	the	network	by	p:
– p’s	current	round	counter
– set	of	processes	punished	by	p
– current	knowledge		of	p about	the	membership	of	the	system

34

Additional	properties	
• Stable	Termination	Property	(SatP):	

– Each	QUERYmust	be	received	by	at	least	one	stable	and	known	
node
Necessary	for	the	diffusion	of	the	information

• Stabilized	Responsiveness	Property	(SRP):
– There	exists	a	time	t after	which	all	nodes	of	p 's	neighborhood	

receive,	to	every	of	their	queries,	a	response	from	pwhich	is	
always	among	the	first	responses

SRP should	hold	for	at	least	one	stable known	node	
(the	eventual	leader)

35

Leader	Election:	Sending	of	Query		

36

punishment

*		- pj is	a	neighbor	of	pi,
- pj does	not	answer	to	pi,
- pj is	not	suspected	to	have	moved

*

36

Reception	of	Query	and	Response;
Invocation	of	the	Leader

37

*

*

*update of pi’s state about punishment, membership, and pi’s neighborhood with more recent
information : keeps the tuples with the greatest counter.
*process with the smallest counter

*

37

Exemple:	Mobility	of	nodes

1

2

3

<1,1>,<1,2>,<1,3>,<1,4>

<0,1>,<0,2>,<0,3>,<0,4>	

<1,2>,<1,3>,<1,4>

4

local_known1

punished1

global_known1

<2,4>

<0,1>,<0,2>,<0,3>,<1,4><0,1>,<0,2>,<0,3>,<2,4>

x:<x,4>	in	local_known1 <		y:<y,4>	in	global_known1

<0,1>,<0,2>,<0,3>,<3,4>

1	stops	punishing	4

5

<1,2>,<1,3>,<2,4>

38

Open	issues	:	models

• Minimal	condition	in	terms	of	time	/	
connectivity	/	dynamicity	to	solve	agreement	
problems

• Unified	realistic	model	for	distributed	systems
– Dynamicity,	heterogeneity	of	nodes

• Adversary	models	(omission,	byzantine	
failures)

39

Open	issues:	distributed	algorithms

• Non	deterministic	algorithms

• Probabilistic	algorithms	/		Indulgent	
algorithms

• Ensure	safety	properties	(eg.	agreement)	
• Relax	liveness properties	(termination)

40

Open	issues:	experiments

• Need	of	testbeds to	validate	algorithms	(Silecs
initiative)

• Realistic	mobility	patterns	

• Reproducible	experiments

41

Concluding	remarks
Distributed	systems	are	dynamic	

Failure	detection	a	key	component	to	build	reliable	
application	

Unreliable	FDs	
– A	clear	extension	of	asynchronous	model
– A	tool	to	build	services	in	asynchronous	network

42

