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PREFACE

T
he aim of this document is to give a bird’s eye view of my research on multi-agent

online learning. I do not claim to be comprehensive in this endeavor; rather, my

guiding principle was to be comprehensible.

This had two main consequences: First, I had to leave out a fair number of research

topics that I find equally exciting but did not otherwise fit the core of the present narrative.

Second, I opted for a more conversational style, putting more emphasis on the results

themselves rather than the technical trajectory that led to them. This might frustrate

some readers who would seek to dive in the murky waters of the proofs and to analyze

the technical contributions therein. I hope these readers will be satisfied by the list of

references provided throughout this manuscript, and where all the relevant technical

content can be found. Instead, my goal was to make the material presented herein

accessible to non-experts in the field, to present a coherent narrative, and to explain

what drives my research in these topics.

Chapter 2 is perhaps the clearest embodiment of this principle: it does not contain

any original results per se, but rather intends to set the stage for the analysis to come.

It reflects personal views – and biases – on the fundamentals of online learning and

game theory, and I found it necessary to properly structure and position the rest of this

document.

Chapters 3 and 4 comprise the theoretical backbone of my work and are aligned

along two basic axes: continuous- vs. discrete-time considerations. From a practical

viewpoint, the latter is often considered more interesting than the former: a system of

stochastic differential equations can hardly be considered an implementable algorithm,

and one could argue that modeling computer-aided decision processes as continuous-

time dynamical systems is folly (on the surface at least). However, from a mathematical

standpoint, the continuous- and discrete-time approaches comprise two synergistic

research thrusts that dovetail in a unique and singular manner. Thanks to the theory

of stochastic approximation (the glue that holds much of this manuscript together),

insights gained in continuous time can be used to prove discrete-time results that would

otherwise be inaccessible.

Chapters 5 and 6 focus on some applications of my work to high-performance com-

puting (Chapter 5) and wireless communications (Chapter 6). I hesitated for a long time

which applications to present and with what criteria to select them. In the end, I chose

to focus on distributed computing and wireless networks because they were the closest

in spirit to the material presented in the previous chapters, and because they provide

an ideal playground for the theory developed therein. This meant that I had to leave

out other equally interesting applications on generative adversarial networks and traffic

routing, but this couldn’t be helped.

Finally, Chapter 7 presents some perspectives and directions for future research that

arise naturally from the body of work preceding it. If the style of the previous chapters

can be characterized as conversational, this last chapter is one of vigorous hand-waving,

aiming to find a light switch in the dark. The questions stated therein are of a fairly open
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character, and I expect at least a few years to pass before any convincing answers are

obtained.

Finally, Appendices A and B provide a series of biographical and bibliographical

information. This is mostly intended to give some perspective of how the various ideas

and questions evolved over time, and to provide some pointers to papers that treat

a number of questions that could not be properly addressed within the rest of this

manuscript.

disclaimer . Before proceeding, I would feel remiss not to point out that this manuscript is
neither complete nor comprehensive – nor does it purport to be. I have tried to provide pointers to

the relevant literature throughout, but it is not possible to do an adequate (let alone comprehensive)

survey of the state of the art for all the topics addressed herein. The interested reader should be

fully aware of this and should treat this manuscript as an entry point to a much wider literature.
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1
INTRODUCTION

D
epending on the context, the word “learning” might mean very different things: in

network science and control, it could mean changing the way resources are allocated

for a particular task over time; in deep learning and artificial intelligence, it could mean

training a neural network to discriminate between different objects in an image, or to

generate new images altogether; in statistics, it could mean inferring the mapping from

inputs to outputs in a complicated process (such as the response of a protein to a targeted

stimulus); etc. The aim of this manuscript is to provide an in-depth look into the design

and analysis of online learning algorithms in different contexts, both theoretical and

applied: to examine what is and what isn’t possible, to analyze the interactions between

different learning frameworks, and to provide concrete results that can be exploited in

practice.

1.1 context and positioning

One common denominator that emerges in this highly diverse landscape is that learning

invariably involves an agent that seeks to progressively improve their performance on a

specific task – i.e., to “learn”. This agent – the “learner” – could be something as abstract

as an algorithm (e.g., an artificial neural net), or something as mundane as a commuter

going to work each day. Still, irrespective of the nature of the learner, learning is typically

achieved via a feedback loop of the following general form:

1. The agent interfaces with their environment (a computer network, a dataset, etc.)

by selecting an action (a resource allocation scheme, a weight configuration, etc.).

2. The agent receives some feedback based on the quality of the chosen action and the
state of the environment (e.g., the number of users in the network, the available

datapoints, etc.).

An added complication to the above is that, in many practical applications, the actions

of the learner may also affect the state of the environment, so this feedback loop might

go both ways. This is perhaps best illustrated by two examples:

Example 1.1 (Traffic routing). Consider a set of computer users with a set of traffic

demands to be routed over a network (such as the Internet). If a user chooses to route a

significant amount of traffic through a part of the network employed by other users, this

part might become congested and users might end up switching to different routes. In

so doing however, other, previously uncongested links might now become congested,

so the first user would have to adapt to the new reality. In this way, every user in the

networkmust both (i) learn which routes of the network aremore suitable for their traffic

demands; and (ii) learn to adapt to the behavior of other users that are simultaneously

vying for the same resources.

Example 1.2 (Generative adversarial networks). A generative adversarial network (GAN)

is an artificial intelligence algorithm used in unsupervised machine learning to generate

samples from an unknown, target distribution (e.g., images with sufficiently many

1



2 introduction

Figure 1.1: A typical GAN architecture and uncurated generated images taken from [102].

realistic characteristics to look authentic to human observers). Introduced in a seminal

paper byGoodfellow et al. [56], aGANconsists of two neural networks competing against

each other in a zero-sum game. One network – the generator – outputs candidate samples

aiming to approximate the unknown target distribution, while the other network – the

discriminator – evaluates the result based on a training set of instances taken from the true

data distribution (for a schematic illustration, see Fig. 1.1). The objective of the generator

is to fool the discriminator by providing samples that cannot be readily distinguished

from the true distribution; at the same time, the discriminator seeks to adapt to the

generator’s evolution over time. In this way, each network plays simultaneously the role

of the “learner” and of the “environment” (to the other network).

Both examples above can be construed as special cases ofmulti-agent online learning:1
they comprise multiple interacting agents (or players), each with their individual actions,
and seeking to attain possibly different objectives. As such, a fundamental question that

arises in this context is the following:

Does learning lead to stability in multi-agent systems?

For instance, if all the users of a computer network follow a learning algorithm to try and

learn the best route for their traffic demands, would that allow the system to converge to

some “stable”, steady state?

1.2 diagrammatic outline

The rest of this manuscript aims to provide answers to this fundamental question in a

range of different contexts, both practical and theoretical. For the reader’s convenience,

we provide a rough diagrammatic outline below and we rely on a series of margin notes

and hyperlinks to facilitate the navigation of the manuscript.

chapter 2. We begin in Chapter 2 by providing a gentle introduction to onlineOnline optimization
and game theory optimization and game theory. The aim of this chapter is twofold: First, it represents

an effort to make this manuscript as self-contained as possible by providing some fun-

damental results in the field. Second, we aim to establish a point of reference for the

analysis to come by collecting all relevant definitions, prerequisites, and basic no-regret

algorithms (such as online gradient descent, online mirror descent / dual averaging,

etc.). The reader who is already familiar with the material presented here can safely skip

ahead and use it only as a reference for notation and terminology.

chapter 3. In this chapter, we flesh out a continuous-time skeleton for online op-Continuous-time
analysis and results timization and learning in games. We discuss regret bounds in continuous time and

how these overcome the corresponding minimax bounds for discrete time. We also

1 To maximize the number of applications treated in this manuscript, we do not revisit routing and GANs in

the rest of this manuscript; for some of the author’s work on these topics, see instead [102, 147].



1.3 notation and terminology 3

introduce a continuous-time dynamical system induced in multi-player games by the

no-regret learning algorithms of Chapter 2, and we discuss some basic properties of

these dynamics – both negative and positive. Specifically, we discuss (i) the dynamics’

Poincaré recurrence properties and their ramifications for convergence in zero-sum

games (Section 3.2); (ii) the dynamics’ long-run convergence and rationalizability prop-

erties, in both finite and continuous games (Section 3.3); and (iii) the robustness (and/or
breakdown) of these properties in the presence of noise, modeled here as an Itô diffusion

process (Section 3.4).

chapter 4. In Chapter 4, we return to the discrete-time, no-regret framework of Discrete-time
analysis and resultsChapter 2, and we examine which of the properties established in continuous time

continue to hold in this bona fide algorithmic setting. More precisely, we discuss (i) the
non-convergent behavior and the appearance of limit cycles under no-regret learning

in zero-sum games in Section 4.1; (ii) the resolution of these phenomena in strictly

monotone (or strictly coherent) games and games with dominated strategies or strict

equilibria (Section 4.2); and (iii) the modifications to this analysis when the players of

the game only have access to their in-game, realized payoffs (Section 4.3).

chapter 5. In this chapter, we examine a series of applications of the theory devel- Applications to
distributed optimizationoped in the previous chapters to the solution of very large scale distributed optimization

problems. We consider different multi-worker configurations of computer clusters

(master-slave architectures or multi-core systems with shared memory), and we focus

on the optimization properties of a distributed implementation of stochastic gradient

descent in this setting, Our main point of interest is the algorithm’s robustness to the

delays incurred by different processors working at different speeds.

chapter 6. Continuing with a series of applications of the theory developed in Applications to signal
processingChapters 3 and 4, we discuss in this chapter a game-theoretic / distributed optimization

framework for the problem of throughput maximization in multiple-input and multiple-

output systems. The main contribution outlined in this chapter is the derivation and

analysis of the matrix exponential learning algorithm, an efficient solution method

for trace-constrained semidefinite optimization problems. This algorithm is heavily

influenced by the game-theoretic analysis of Chapter 4 and is shown to provide state-of-

the-art guarantees for multi-antenna systems and networks.

Finally, Chapter 7 contains some perspectives and direction for future research, while

Appendices A and B provide a series of biographical and bibliographical information

for the author. For the reader’s convenience, we also provide a quick overview of the

notational conventions used in this manuscript in the next section.

1.3 notation and terminology

notational conventions . Throughout what follows, V will denote a finite-di- Convex analysis
mensional real space with norm ∥⋅∥ and X ⊆ V will be a closed convex subset thereof.

Following standard conventions, we will write ri(X ) for the relative interior ofX , bd(X )
for its (relative) boundary, and diam(X ) = sup{∥x′ − x∥ ∶ x , x′ ∈ X} for its diameter.

We will also write Y ≡ V∗ for the (algebraic) dual of V , ⟨y, x⟩ for the canonical pairing
between y ∈ Y and x ∈ V , and ∥y∥∗ ≡ sup{⟨y, x⟩ ∶ ∥x∥ ≤ 1} for the dual norm of y in Y .
Given an extended-real-valued function f ∶V → R ∪ {+∞}, its effective domain

is defined as dom f = {x ∈ V ∶ f (x) < ∞} and its subdifferential at x ∈ dom f is
given by ∂ f (x) = {y ∈ V∗ ∶ f (x′) ≥ f (x) + ⟨y, x′ − x⟩ for all x′ ∈ V}. The doman of

subdifferentiability of f is defined as dom ∂ f ≡ {x ∈ V ∶ ∂ f (x) ≠ ∅}. Finally, if ∂ f (x)



4 introduction

is a singleton, we will say that f is differentiable at x and we will write ∇ f (x) for the
unique element thereof.

For all x ∈ X , the tangent cone TCX (x) is defined as the closure of the set of all rays

emanating from x and intersecting X in at least one other point. Dually to the above,

the polar cone PCX (x) to X at x is defined as PCX (x) = {y ∈ Y ∶ ⟨y, z⟩ ≤ 0 for all z ∈
TCX (x)}. For notational convenience, when X is understood from the context, we will

drop it altogether and write more simply TC(x) and PC(x) instead.
In the sequel, we will also make heavy use of the Landau asymptotic notationO(⋅),Landau notation

o(⋅), Ω(⋅), etc. As a quick reminder, given two functions f , ∶R → R, we say that

f (t) = O((t)) if f grows no faster than , i.e., there exists some positive constant c > 0
such that ∣ f (t)∣ < c(t) for sufficiently large t (negative parts are ignored throughout).

Conversely, we write f (t) = Ω((t)) if f grows no slower than , i.e., if (t) = O( f (t)).
If we have both f (t) = O((t)) and f (t) = Ω((t)), we write f (t) = Θ((t)); and
if limt→∞ f (t)/(t) = 1, we say that  grows as f and we write f (t) ∼ (t) as t →∞.

Finally, if lim supt→∞ f (t)/(t) = 0, we write f (t) = o((t)) and we say that f is
asymptotically dominated by .

a note on terminology. There is an unfortunate disconnect between gameDescent vs. ascent
theory and optimization in terms of how objectives are formulated. In optimization,

the objective is to minimize the incurred cost; in game theory, to maximize one’s re-
wards. In turn, this creates a clash of terminology when referring to methods such as

“gradient descent” or “mirror descent” in a maximization setting. To avoid going against

the traditions of each field, we keep the usual conventions in place (minimization in

optimization, maximization in game theory), and we rely on the reader to make the

mental substitution of “descent” to “ascent” when needed.

Throughout this manuscript, we consider genderless agents and individuals. WhenEpicenes
an individual is to be singled out, we will consistently employ the pronoun “they” and

its inflected or derivative forms. The debate between grammarians regarding the use

of “they” as a singular epicene pronoun (with different editions of The Chicago Manual
of Style famously providing different recommendations) is beyond the scope of this

manuscript.
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2
PRELIMINARIES

O
ur aim in this introductory chapter is to discuss the basics of optimal decision-making

in unknown environments – what are the criteria for optimality, the policies that

attain them, etc. To do so, we take an approach based on two complementary viewpoints.

The first seeks to emulate the perspective of an agent that is faced with a recurring

decision process but has no knowledge of its governing dynamics. We call this the

“unilateral viewpoint” and we discuss it in detail in Sections 2.1 and 2.2. More precisely,

Section 2.1 introduces the core framework of online optimization and the notion of

regret which is central for our considerations; subsequently, in Section 2.2, we present

an array of basic regret minimization algorithms and their performance guarantees.

The second viewpoint is more “holistic” and concerns several interacting agents whose

decisions affect each other. The rules governing these interactions are still unknown to

the agents, and the goal is to characterize those decisions that are simultaneously stable

for each agent individually. We present this “multi-agent viewpoint” in Section 2.3: its

main ingredients are non-cooperative games and the different solution concepts that

arise in this context (Nash equilibrium, correlated equilibrium, etc.).

The natural bridging point between these two settings is the study of no-regret learning

(a unilateral notion) in non-cooperative games (the quintessential element of the multi-

agent viewpoint). This is the common unifying theme for most of this manuscript, and

we examine it in detail in Chapters 3 and 4. The present chapter is meant to set the stage

for the sequel by providing the core prerequisites for this analysis.

2.1 the unilateral viewpoint : online optimization

#This section incorporates material from the tutorial paper [13]

2.1.1 The basic model

Online optimization focuses on repeated decision problems (RDPs) where the objective Online optimization
is to minimize the aggregate loss incurred against a sequence of unknown loss functions.

More precisely, the prototypical setting of online optimization can be summarized by

the following sequence of events:

1. At every stage t = 1, 2, . . . , the optimizer selects an action Xt from a closed convex

subset X of an ambient n-dimensional normed space V .
2. Once an action has been selected, the optimizer incurs a loss ℓt(Xt) based on an

(a priori) unknown loss function ℓt ∶X → R.

3. Based on the incurred loss and/or any other feedback received, the optimizer

updates their action and the process repeats.

Based on the structural properties of ℓt , we have the following basic problem classes:

• Online convex optimization: each ℓt is assumed convex.

7
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Require: action set X, sequence of loss functions ℓt ∶X → R
1: for t = 1, 2, . . . do
2: select Xt ∈ X # action selection
3: incur ℓt(Xt) # incur loss
4: update Xt ← Xt+1 # update action
5: end for

Figure 2.1: Sequence of events in online optimization.

• Online strongly convex optimization: each ℓt is assumed strongly convex, i.e.,

ℓt(x′) ≥ ℓt(x) + ⟨∇ℓt(x), x′ − x⟩ +
αt

2
∥x′ − x∥2 (2.1)

for some αt > 0 (called the strong convexity modulus of ℓt).

• Online linear optimization: each ℓt is assumed linear, i.e., of the form

ℓt(x) = −⟨vt , x⟩ for some payoff vector vt ∈ V∗ . (2.2)

Linear and strongly convex problems are both subclasses of the convex class, but they

are otherwise disjoint; for convenience, we also assume throughout that each ℓt is
differentiable1 and that it attains its minimum in X .

For concreteness, we discuss below some key examples of repeated decision problems

(see also Fig. 2.1 for a pseudocode representation):

Example 2.1. Consider the static optimization problemStatic optimization

minimize f (x)
subject to x ∈ X

(Opt)

where f ∶X → R is a static objective function. Viewed as an RDP, this corresponds to

the case where the loss functions encountered by the optimizer are all equal to f , i.e.,

ℓt(x) = f (x) for all t = 1, 2, . . . (2.3)

The optimality gap of a sequence of actions Xt ∈ X after T stages is then given by

Gap(T) =
T

∑
t=1

f (Xt) − Tmin
x∈X

f (x) =
T

∑
t=1

ℓt(Xt) −min
x∈X

T

∑
t=1

f (x)

= max
x∈X

T

∑
t=1
[ℓt(Xt) − ℓt(x)]. (2.4)

This last quantity is known as the agent’s regret and it plays a central role in the sequel.

Example 2.2. Extending the above to problems involving randomness and uncertainty,Stochastic optimization
consider the stochastic optimization problem

minimize f (x) ≡ E[F(x;ω)]
subject to x ∈ X

(Opt-S)

1 We adopt here the established convention of treating gradients as dual vectors. For book-keeping reasons, we

will tacitly assume that ℓt is defined on an open neighborhood ofX inV ; alternatively, in the convex case, if we

view ℓt as an extended-real-valued function on V with effective domain dom ℓt ≡ {x ∈ V ∶ ℓt(x) <∞} = X ,

we can simply assume that ∂ℓt admits a continuous selection, denoted by∇ℓt . Either way, none of the results
presented in the sequel depend on this device, so we do not make this assumption explicit.
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where F∶X×Ω → R is a stochastic objective defined on some probability space (Ω,F ,P).
In the RDP framework described above, it is assumed that an i.i.d. random sampleωt ∈ Ω
is drawn at each stage t = 1, 2, . . . , and the loss function encountered by the optimizer is

ℓt(x) = F(x;ωt) for all t = 1, 2, . . . (2.5)

As a result, the best that the optimizer could do on average would be to play a solution

of (Opt-S); in turn, this leads to the mean optimality gap

Gap(T) = E[
T

∑
t=1

ℓt(Xt)] − Tmin
x∈X

f (x) = E[
T

∑
t=1

ℓt(Xt)] −min
x∈X

E[
T

∑
t=1

F(x;ωt)]

≤ E[
T

∑
t=1

ℓt(Xt)] −E[min
x∈X

T

∑
t=1

ℓt(x)]

= E[max
x∈X

T

∑
t=1
[ℓt(Xt) − ℓt(x)]]. (2.6)

Of course, if there is no randomness, this expression reduces to (2.4).

Example 2.3. As a third example, consider the saddle-point (SP) problem Saddle-point problems

minimize f (x) ≡ maxθ∈Θ Φ(x; θ)
subject to x ∈ X

(SP)

where θ is a parameter affecting the problem’s value function Φ∶X ×Θ → R in a manner

beyond the optimizer’s control. In other words, (SP) simply captures Wald’s minimax

optimization criterion of minimizing one’s losses against the worst possible instance (i.e.,

attaining a certain security level no matter what).

In the associated RDP, θ t ∈ Θ is chosen at each stage t = 1, 2, . . . by an abstract

adversary, so the loss function encountered by the optimizer is

ℓt(x) = Φ(x; θ t) for all t = 1, 2, . . . (2.7)

Accordingly, the optimality gap relative to a minimax solution of (SP) is bounded as

Gap(T) =
T

∑
t=1

ℓt(Xt) − Tmin
x∈X

f (x) =
T

∑
t=1

ℓt(Xt) − Tmin
x∈X

max
θ∈Θ

Φ(x; θ)

≤
T

∑
t=1

ℓt(Xt) −min
x∈X

T

∑
t=1

Φ(x; θ t) =
T

∑
t=1

ℓt(Xt) −min
x∈X

T

∑
t=1

ℓt(x)

= max
x∈X

T

∑
t=1
[ℓt(Xt) − ℓt(x)]. (2.8)

Again, this expression is formally similar to the corresponding expression (2.4) for static

optimization problems; we elaborate on this relation below.

2.1.2 Regret and regret minimization

In each of the above examples, there is a well-defined solution concept which could be

viewed as a natural target point of the associated RDP (minimizers of f in Example 2.1,

average minimizers in Example 2.2, and minimax solutions in Example 2.3). In general

however, these concepts may not be meaningful because, unless more rigid assumptions

are in place, there may be no fixed target point to attain, either static or in the mean.
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This limitation is overcome by the notion of regret, which dates back at least to the work

of Blackwell [19] and Hannan [57] in the 1950’s:

Definition 2.1. The regret incurred by a sequence of actions Xt ∈ X against a sequenceRegret
of loss functions ℓt ∶X → R, t = 1, 2, . . . , is defined as

Reg(T) = max
x∈X

T

∑
t=1
[ℓt(Xt) − ℓt(x)] =

T

∑
t=1

ℓt(Xt) −min
x∈X

T

∑
t=1

ℓt(x) (2.9)

i.e., as the difference between the aggregate loss incurred by the agent after T stages and

that of the best action in hindsight.

In words, the agent’s regret contrasts the performance of the agent’s policy Xt to that

of an action x∗ ∈ argminx∈X ∑
T
t=1 ℓt(x) which minimizes the total incurred loss over

the horizon of play. On that account, the main goal in online optimization is to designNo regret
causal, online policies that achieve no regret, i.e.,

Reg(T) = o(T) for any sequence of loss functions ℓt , t = 1, 2, . . . (2.10)

The performance of such a policy is then evaluated in terms of the actual regret mini-
mization rate achieved, i.e., the precise expression in the o(T) term above.

The situation becomes more complicated if the policy Xt is itself random – and, in

particular, if its randomness is correlated to any randomness that might underlie ℓt . InExpected regret and
pseudo-regret that case, the expected regret of a policy Xt is defined as

E[Reg(T)] = E[max
x∈X

T

∑
t=1
[ℓt(Xt) − ℓt(x)]]. (2.11)

This expression involves the expectation of a minimum which, in general, is difficult to

compute. Instead, a more useful proxy for the regret in stochastic environments is the

so-called pseudo-regret, defined here as

Reg(T) = max
x∈X

E[
T

∑
t=1
[ℓt(Xt) − ℓt(x)]] (2.12)

Since the maximum of the expectation of a family of random variables is majorized by

the expectation of the maximum, we have

Reg(T) ≤ E[Reg(T)], (2.13)

so the pseudo-regret is tighter as a worst-case guarantee.

In a stochastic setting, it is more natural to target the optimal action in expectation

rather than the action which is optimal against the sequence of realized losses. Moreover,

by standard Chernoff–Hoeffding arguments, the typical difference between the expected

regret and the pseudo-regret is of the order of Θ(
√
T). Thus, in general, one cannot

hope to achieve an expected regret minimization rate better thanO(
√
T); by contrast,

in several cases of interest, it is possible to attain much more refined bounds for the

pseudo-regret. Because of this, Reg(T) will be our principal figure of merit for regret

minimization in the presence of randomness and/or uncertainty.

We close this section by revisiting some of the previous examples:

Example 2.4. Going back to the static framework of Example 2.1, Eq. (2.4) yieldsValue convergence

1

T

T

∑
t=1

f (Xt) = min f + 1

T
Reg(T). (2.14)
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Hence, if Xt is a no-regret policy, the sequence of function values f (Xt) converges to
min f in the Cesàro sense. In particular, if f is convex, Jensen’s inequality shows that
the time-averaged sequence

X̄T =
1

T

T

∑
t=1

Xt (2.15)

achieves the value convergence rate

f (X̄T) ≤ min f + 1

T
Reg(T). (2.16)

Likewise, in the stochastic setting of Example 2.2, we readily obtain

E[ f (X̄T)] ≤ min f + 1

T
Reg(T) (2.17)

provided that ωt is independent of Xt .2

This mode of convergence is often referred to as “ergodic convergence” or Polyak–Rup-

pert averaging [117] and its study dates back at least to Novikoff [114]. In particular, if X̄T
is viewed as the output of an optimization algorithm generating the sequence of states

Xt ∈ X , the induced (pseudo-)regret directly reflects the algorithm’s value convergence

rate. We will revisit this issue several times in the sequel.

Example 2.5. Consider the following discrete variant of the stochastic optimization Multi-armed bandits
setting of Example 2.2. At each stage t = 1, 2, . . . , the optimizer selects an action at from
some finite setA = {1, . . . , n}. The reward of each arm a ∈ A is assumed to be an i.i.d.

random variable va ,t ∈ [0, 1] drawn from an unknown distribution Pa , and the aim is to

choose the action with the highest mean reward as often as possible. Following Robbins

[119], this is called a (stochastic)multi-armed bandit (MAB) problem in reference to the

“arms” of a slot machine in a casino – a “bandit” in the colorful slang of the 1950’s.

To quantify the above, let µa denote the mean value of the reward distribution Pa of
the a-th arm, and let

µ∗ ≡ max
a∈A

µa and a∗ ≡ argmax
a∈A

µa (2.18)

respectively denote the bandit’s maximal mean reward and the arm that achieves it (a

priori, there could be several such arms but, for simplicity, we assume here that there is

only one). Then, if the agent selects a ∈ A at time t with probability Xa ,t , the induced

(pseudo-)regret after T stages will be

Reg(T) = µ∗T −
T

∑
t=1

E[va t ,t] = max
a∈A

T

∑
t=1

E[va ,t − va t ,t]

= max
x∈∆(A)

E[
T

∑
t=1
⟨vt , x − Xt⟩] = max

x∈∆(A)
E[

T

∑
t=1
[ℓt(Xt) − ℓt(x)]] (2.19)

where: (i) at denotes the arm played at time t; (ii) vt = (va ,t)a∈A ∈ Rn is the reward
vector of stage t (typically it is assumed that −1 ≤ va ,t ≤ 1 for all t); and (iii) the loss
functions ℓt are defined as ℓt(x) = −⟨vt , x⟩.3 Under this light, multi-armed bandits can

be seen as (linear) stochastic optimization problems over the simplex X ≡ ∆(A) of
probability distributions overA.

2 Recall here that ωt is drawn after Xt , so this independence is not restrictive: for instance, this is always the
case if ωt is i.i.d. and Xt is predictable relative to the history σ(ω1 , . . . , ωt−1) of ωt up to stage t − 1.

3 Since each ℓt is linear in x, maximizing overA or ∆(A) gives the same result.
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2.2 no-regret algorithms

#This section incorporates material from the tutorial paper [13]

We now turn to the fundamental question underlying the online optimization frame-

work discussed above:

Is it possible to achieve no regret? And, if so, at what rate?

Of course, any answer to these questions must depend on the specifics of the problem at

hand – the assumptions governing the problem’s loss functions, the information available

to the optimizer, etc. In the rest of this section, we focus on obtaining simple answers in

a range of different settings that arise in practice.

2.2.1 Feedback assumptions

We begin by specifying the type and amount of information available to the optimizer.Oracle feedback
Our starting point will be the so-called “oraclemodel” inwhich the optimizer gains access

to each loss function via a black-box feedback mechanism (i.e., in a model-agnostic

manner). Formally, given a (complete) probability space (Ω,F ,P) and a measurable

space of signals S , an oracle for a function f ∶X → R is simply a map Or f ∶X ×Ω → S
that outputs a (random) signal Or f (x;ω) ∈ S when called at x ∈ X . Some important

examples of such oracles are discussed below:

1. Full information: In this case, the space of signals S is a space of functions andFull information
Or f (x) = f . In other words, when called at a point x ∈ X , a full-information

oracle returns the entire function f ∶X → R (hence the name). [This oracle is

assumed deterministic, so we suppress the argument ω.]

2. Perfect n-th order information: Oracles in this class return information on the

n-th order derivates of the function at the input point x ∈ X . In the “perfect

information” case, when called at x ∈ X , the oracle returns the tensor

Or f (x) = Dn f (x) = ( ∂n f
∂x i1 . . . ∂x in

)
i1 , . . . , in=1, . . . ,n

(2.20)

[Again, these oracles are assumed deterministic so the argument ω is suppressed.]

By far the most widely used oracles of this type are the cases n = 0, 1 and 2:

• The case n = 0 gives Or f (x) = f (x) and is known in the literature as banditBandit feedback
feedback (in reference to the multi-armed bandit problem of Example 2.5).

It is most common in problems where scarcity of information plays a major

role (such as adversarial and game-theoretic learning).

• The case n = 1 corresponds to perfect gradient feedback, i.e., Or f (x) =Gradient feedback
∇ f (x). This is most common in medium-to-small-scale optimization prob-

lems where exact gradient calculations are still within reach.

• The case n = 2 amounts to accessing to the Hessian matrix Hess( f (x)) of fHessian feedback
at x. Hessian calculations are very intensive in terms of computational power,

so such oracles are most commonly encountered in relatively small-scale

optimization problems that need to be solved to a high degree of accuracy.

3. Noisy n-th order information: Here, the setup is as before with the difference that

the output of the oracle is random. Specializing directly to the cases that are most

common in practice, we have:
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• The case n = 0 corresponds to noisy function evaluations of the form Noisy bandit feedback
Or f (x;ω) = f (x) + ξ(x;ω) for some additive noise variable ξ ∈ R. Or-
acles of this type are the norm in bandit convex optimization problems and

problems where even the calculation of the objective function is computa-

tionally intensive.

• The case n = 1 provides noisy gradient evaluations of the form Or f (x;ω) = Noisy gradient feedback
∇ f (x) +U(x;ω) for some observational noise variable U ∈ V∗. This type

of feedback is extremely common in distributed optimization problems

with objectives of the form f (x) = ∑N
i=1 f i(x): taking a random sample

i ∈ {1, . . . ,N} (or a minibatch thereof) and calculating its gradient gives a

stochastic first-order oracle that is widely used in machine learning, signal

processing, and data science.

The informational content of an oracle can be gauged by the dimension of the signal Memory requirements
space S , which in turn provides an estimate of the memory required to store and process

the received signal. In the full information case, S is typically infinite-dimensional, so

such oracles are of limited practical interest (but are still very useful from a theoretical

standpoint). At the other end of the spectrum, zeroth-order oracles have S = R, so they
are the lightest in terms of memory requirements (but are otherwise the hardest to work

with). Between these two extremes, n-th order oracles have S = (V∗)⊗n ≅ Rnn
, i.e.,

their memory requirements grow exponentially in n. This “curse of dimensionality” is

one of the main reasons for the sweeping popularity of first-order methods in problems

where the dimension of the ambient state space V becomes prohibitively large.

In view of the above, a large part of our analysis will focus on stochastic first-order Stochastic first-order
oracle feedbackoracles (SFOs) that return possibly imperfect gradient measurements at the point where

they are called. Specifically, we will assume that such an oracle is called repeatedly at a

(possibly random) sequence of points Xt ∈ X and, at each stage t = 1, 2, . . . , returns a
vector signal of the form

∇t = ∇ℓt(Xt) + Zt (2.21)

where the “observational error” term Zt captures all sources of uncertainty in the oracle.

In more detail, to differentiate between “random” (zero-mean) and “systematic” (non- Random vs. systematic
errorszero-mean) errors in ∇t , it will be convenient to decompose Zt as

Zt = Ut + bt (2.22)

where Ut is zero-mean and bt captures the mean value of Zt . To define these two

processes formally, we will subsume any randomness in ∇t and ℓt in a joint event ωt
drawn from some (complete) probability space (Ω,F ,P). Since this randomness is

generated after the optimizer selects an action Xt ∈ X (cf. the sequence of events in

Fig. 2.1), the processes ∇t and Zt are, a priori, not adapted to the history of Xt . More

explicitly, writing Ft = σ(X1 , . . . , Xt) for the natural filtration of Xt , the processes bt
and Ut are defined as

bt = E[Zt ∣Ft] and Ut = Zt − bt (2.23)

so, by definition, E[Ut ∣Ft] = 0.
In view of all this, SFOs can be classified according to the following statistics: SFO statistics

1. Bias:
Bt = E[∥bt∥∗] (2.24a)

2. Variance:
σ 2
t = E[∥Ut∥2∗] (2.24b)
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Algorithm 2.1: Follow the regularized leader

Require: strongly convex regularizer h∶X → R; weight parameter γ > 0
1: for t = 1, 2, . . . do
2: play X ← argminx∈X{∑

t
s=1 ℓs(x) + γ−1h(x)} # choose action

3: observe ℓt # get feedback
4: end for

3. Second moment:
M2

t = E[∥∇t∥2∗] (2.24c)

An oracle with Bt = 0 for all t will be called unbiased, and an oracle with limt→0 Bt = 0
will be called asymptotically unbiased; finally, an unbiased oracle with σt = 0 for all t will
be called perfect. We will examine all these cases in detail in the sequel.

2.2.2 Leader-following policies

The first no-regret candidate process that we will examine is based on the followingFollow the leader
simple principle: at time t + 1, the optimizer plays the action that is optimal in hindsight

up to (and including) stage t. This policy is known as follow-the-leader (FTL) and it can

be formally described via the update rule:

Xt+1 ∈ argmin
x∈X

t

∑
s=1

ℓs(x) (FTL)

with the usual convention∑t∈∅ at = 0 for the empty sum (i.e., X1 is initialized arbitrarily).

In terms of computational overhead, this policy requires a full information oracleCover’s impossibility
principle (i.e., the knowledge of ℓt once Xt is chosen) and the ability to compute the argmin

in the (FTL) update rule. Both requirements are significantly lighter in online linear

optimization problems where each objective is of the form (2.2). However, even in this

restricted setting, (FTL) incurs positive regret: a well-known example over X = [−1, 1]
is provided by the sequence of alternating losses

ℓt(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−x/2 for t = 1,
x if t > 1 is even,
−x if t > 1 is odd.

(2.25)

Against this sequence, (FTL) gives Xt = argminx∈[−1,1](−1)t−1x/2 = (−1)t for all t > 1,
so the total incurred loss after T stages is∑T

t=1 ℓt(Xt) = T − X1/2 − 1. By contrast, the
constant policy Xt = 0 incurs zero loss for all t, implying in turn that Reg(T) ∼ T .

The main reason behind this failure is that (FTL) is too “aggressive”. Indeed, if theFollow the
regularized leader cumulative loss function∑t

s=1 ℓs exhibits significant oscillations between one stage and

the next, (FTL) will also jiggle between extremes, and this behavior can be exploited by

the adversary. One way to overcome this behavior is to introduce a penalty term which

makes these oscillations less extreme (and hence, less exploitable); this leads to a policy

known as follow-the-regularized-leader (FTRL) [135–137], and which can be stated as

follows:

Xt+1 = argmin
x∈X

{
t

∑
s=1

ℓs(x) +
1

γ
h(x)}. (FTRL)

[For a pseudocode implementation, see Algorithm 2.1.]

In the above, h∶X → R is a regularization (or penalty) function and γ > 0 is a tunable
parameter that adjusts the weight of the regularization term. By this token, to ensure
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that this mechanism dampens oscillations, it is common to assume that the regularizer

h∶X → R is continuous and strongly convex, i.e., there exists some K > 0 such that

[λh(x′) + (1 − λ)h(x)] − h(λx′ + (1 − λ)x) ≥ K
2
λ(1 − λ) ∥x′ − x∥2 (2.26)

for all x , x′ ∈ X and all λ ∈ [0, 1]. Moreover, under the empty sum convention

∑0
s=1 ℓs(x) ≡ 0, the method is initialized at the so-called prox-center xc of X , viz.

X1 = xc ≡ argmin
x∈X

h(x). (2.27)

Remark. We should state here that (FTL) and (FTRL) are closely related to the learning

policies known in economics and game theory as fictitious play (FP) and smooth fictitious
play (SFP) respectively. These policies correspond to playing a best response (resp.

regularized or smooth best response) to the empirical history of play of one’s opponents,

and their study dates back to Brown [29], Robinson [121], and Fudenberg and Levine

[54]; for a more recent treatment, see also Hofbauer and Sandholm [65].

With all this in hand, the regret analysis of (FTRL) is typically performed under the Blanket assumptions
following blanket assumptions:

Assumption 2.1 (Convexity). Each ℓt ∶X → R is convex.

Assumption 2.2 (Lipschitz continuity). Each ℓt ∶X → R is Lipschitz continuous, i.e.,

∣ℓt(x′) − ℓt(x)∣ ≤ Lt∥x′ − x∥ (2.28)

for some Lt > 0 and all x , x′ ∈ X .

Remark. Since ℓt is assumed differentiable, Assumption 2.2 basically provides an upper

bound for its gradient. In the convex case, all this can be subsumed in the assumption

that the subdifferential of ℓt on X admits a bounded selection. We will not require this

level of detail at this point, so we stick with the simplest formulation.

In this general setting, we have the following basic result:

Theorem 2.1 (Shalev-Shwartz, 2007). Suppose that (FTRL) is run against a sequence of Regret of FTRL
loss functions ℓt , t = 1, 2, . . . , satisfying Assumptions 2.1 and 2.2. Then, the algorithm’s
regret is bounded by

Reg(T) ≤ H
γ
+ γ
K

T

∑
t=1

L2
t (2.29)

where H ≡ max h−min h denotes the “depth” of h overX .4 In particular, if L ≡ supt Lt <∞
and (FTRL) is run with regularization parameter γ = (1/L)

√
HK/T, the incurred regret

is bounded as
Reg(T) ≤ 2L

√
(H/K)T . (2.30)

Theorem 2.1 shows that achieving no regret is possible as long as (i) the optimizer has

full access to the loss functions ℓt revealed up to the previous stage (inclusive); (ii) the
minimization problem defining (FTRL) can be solved efficiently; and (iii) the horizon
of play is known in advance. Of these limitations, (iii) is the easiest to resolve via a

method known as the “doubling trick”;5 on the other hand, (i) and (ii) represent inherent
limitations of leader-following policies and are harder to overcome. We address these

points in detail in the next section.

4 We write here H instead HX for notational simplicity.

5 In a nutshell, this involves running (FTRL) over windows of increasing length with a step-size that is chosen

optimally for each window; for a detailed account, see Cesa-Bianchi and Lugosi [35], Shalev-Shwartz [136].
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Figure 2.2: Schematic representation of online gradient descent.

Algorithm 2.2: Online gradient descent

Require: step-size sequence γt > 0
1: choose X1 ∈ X # initialization
2: for t = 1, 2, . . . do
3: incur loss ℓt(Xt) # losses revealed
4: receive signal Vt ← −[∇ℓt(Xt) +Ut] # oracle feedback
5: update Xt+1 ← Π(Xt + γtVt) # gradient step
6: end for

2.2.3 Online gradient descent

In optimization theory, the most straightforward approach to minimize a given lossOnline gradient descent
function is based on (projected) gradient descent: at each stage, the algorithm takes a

step against the gradient of the objective, the resulting point is projected back to the

problem’s feasible region (if needed), and the process repeats.

When faced with a different loss function at each stage, this gives rise to the policy

known as online gradient descent (OGD). Formally, this refers to the recursive update

rule

Xt+1 = Π(Xt + γtVt) (OGD)

where

Vt = −∇t = −[∇ℓt(Xt) + Zt] (2.31)

denotes the return of a stochastic first-order oracle at Xt (cf. Section 2.2.1), γt > 0 is the
algorithm’s step-size (discussed below), and Π∶V → X is the Euclidean projector

Π(x) = argmin
x′∈X

∥x′ − x∥2 . (2.32)

[For a schematic representation of the method, see Fig. 2.2; see also Algorithm 2.2 for a

pseudocode implementation. For simplicity, we also drop the dependence of Π on X ,
and we write Π instead of ΠX .]

Remark 2.1. Before proceeding, it is worth noting a technical discrepancy in (OGD).

Specifically, seeing as gradients are formally represented as dual vectors, the addition

Xt+γtVt of a primal and a dual vector is not well-defined. This issue is usually handwaved

away by assuming thatV is a Euclidean (orHilbert) space, in which caseV∗ is canonically
identified with V . However, this assumption can only be made if the norm ∥⋅∥ satisfies
the parallelogram law (i.e., if it is induced by a scalar product); if this is not the case (e.g.,

if ∥⋅∥ is the L1 norm), the situation is more delicate. We discuss this issue in detail in the

next section.

The study of (OGD) in online optimization can be traced back to the seminal paper

of Zinkevich [157] who established the following basic bound:

Theorem 2.2 (Zinkevich, 2003). Suppose that (OGD) is run against a sequence of lossRegret of OGD
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functions satisfying Assumptions 2.1 and 2.2 with a constant step-size γt ≡ γ > 0 and SFO
feedback of the form (2.31). Then, the algorithm’s regret is bounded as

Reg(T) ≤ diam(X )2
2γ

+ γ
2

T

∑
t=1

M2
t + diam(X )

T

∑
t=1

Bt (2.33)

where diam(X ) ≡ max{∥x′ − x∥ ∶ x , x′ ∈ X} denotes the diameter of X . In particular,
if M ≡ supt Mt < ∞ and (OGD) is run with step-size γ = (1/M)diam(X )/

√
T, the

algorithm enjoys the bound

Reg(T) ≤ diam(X )[M
√
T +

T

∑
t=1

Bt]. (2.34)

Corollary 2.3. If (OGD) is run with unbiased SFO feedback (Bt = 0 for all t), we have

Reg(T) ≤ diam(X )M
√
T . (2.35)

Finally, if the oracle is perfect (Ut = 0 for all t), the incurred regret is bounded as

Reg(T) ≤ diam(X )L
√
T . (2.36)

Up to a multiplicative constant, the bound (2.36) is essentially the same as the corre- OGD vs. FTRL
sponding bound (2.30) for (FTRL); in particular, as long as the oracle does not suffer

from systematic errors (or the corresponding bias Bt becomes sufficiently small over

time), (OGD) still enjoys anO(
√
T) regret bound. In other words, (OGD) achieves the

same regret minimization rate as (FTRL), even though the latter requires a full informa-
tion oracle. This makes (OGD) significantly more lightweight, so it can be applied to a

considerably wider class of problems.

We close this section with a brief discussion on the optimality of the bounds (2.35) and Minimax bounds
(2.36). In this regard, Abernethy et al. [1] showed that an informed adversary choosing

linear losses of the form ℓt(x) = −⟨vt , x⟩ with ∥vt∥ ≤ L can impose regret no less than

Reg(T) ≥ diam(X )L
2
√
2

√
T . (2.37)

This “minimax” bound suggests that there is little hope of improving the regret mini-

mization rate of (OGD) given by (2.33). Nevertheless, despite this negative result, the

optimizer can achieve significantly lower regret when facing strongly convex losses. More

precisely, if each ℓt is α-strongly convex (cf. the classification of Section 2.1.1), Hazan

et al. [63] showed that (OGD) with a variable step-size of the form γt ∝ 1/t enjoys the
logarithmic regret guarantee

Reg(T) ≤ 1

2

L2

α
logT = O(logT). (2.38)

Importantly, this guarantee is tight in the class of strongly convex functions, even Logarithmic regret
up to the multiplicative constant in (2.38). Specifically, if the adversary is restricted to

quadratic convex functions of the form ℓt(x) = 1

2
x⊺Atx − ⟨vt , x⟩ + c with At ≽ α I, the

optimizer’s worst-case regret is bounded from below as

Reg(T) ≥ 1

2

L2

α
logT . (2.39)

This shows that the rate of regret minimization in online convex optimization depends

crucially on the curvature of the loss functions encountered. Against arbitrary loss

functions, the optimizer cannot hope to do better than Ω(
√
T); however, if the loss
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minimax regret ogd guarantee

convex Ω(diam(X )L
√
T) O(diam(X )L

√
T)

α-strong Ω(L2/α logT) O(L2/α logT)

Table 2.1: Regret achieved by (OGD) against L-Lipschitz convex losses.

functions encountered possess a uniformly positive global curvature, the optimizer’s

worst-case guarantee becomesO(logT). For convenience, we collect these bounds in
Table 2.1.

2.2.4 Online mirror descent

Even though the worst-case bound (2.36) for (OGD) is essentially tight, there are casesThe geometry of MABs
where the problem’s geometry allows for considerably sharper regret guarantees. This

is best understood in the MAB setting of Example 2.5: as discussed there, MABs can

be seen as online linear optimization problems with action set X = ∆(A) ≡ {x ∈ Rn ∶
∑a∈A xa = 1} and linear loss functions of the form ℓt(x) = −⟨vt , x⟩ for some reward

vector vt ∈ Rn . The standard payoff normalization assumption for vt is that va ,t ∈ [−1, 1]
for all t = 1, 2, . . . and all a ∈ A, so the Lipschitz constant of the bandit’s loss functions
relative to the Euclidean norm can be bounded by

L2 = max{∥v∥2 ∶ ∣va ∣ ≤ 1 for all a} =
√
12 +⋯ + 12 =

√
n. (2.40)

Thus, in view of (2.36), the regret of (OGD) in a MAB problem with perfect oracle

feedback is at most

Reg(T) ≤ 2
√
nT . (2.41)

On the other hand, under the ℓ∞ norm (i.e., ∥v∥∞ = maxa∈A∣va ∣ for v ∈ Rn), the

corresponding Lipschitz constant would be bounded by

L∞ = max{∥v∥∞ ∶ ∣va ∣ ≤ 1 for all a} = maxa∈A{∣va ∣ ∶ ∣va ∣ ≤ 1} = 1. (2.42)

Hence, a natural question that arises is whether running (OGD) with a non-Euclidean
norm can lead to better regret bounds when there are sharper estimates for the Lipschitz

constant of the problem’s loss functions.6 This question is at the heart of a general class

of online optimization algorithms known collectively as online mirror descent (OMD).

To define it, it will be convenient to rewrite the Euclidean projection in (OGD) inOGD revisited
more abstract form as follows: given an input point x ← Xt and an impulse vector

y ← γtVt , (OGD) returns the output point x+ ← Xt+1 defined as

x+ = Π(x + y) = argmin
x′∈X

{∥x + y − x′∥2}

= argmin
x′∈X

{∥x − x′∥2 + ∥y∥2 + 2⟨y, x − x′⟩}

= argmin
x′∈X

{⟨y, x − x′⟩ + D(x′ , x)}, (2.43)

where

D(x′ , x) ≡ 1

2
∥x′ − x∥2 = 1

2
∥x′∥2 − 1

2
∥x∥2 − ⟨x , x′ − x⟩ (2.44)

denotes the (squared) Euclidean distance between x and x′. Written this way, the basicThe Bregman divergence

6 This is also related to Remark 2.1 on the addition of primal and dual vectors in (OGD). Seeing as the underlying

norm now plays an integral part, it is no longer possible to casually identify primal and dual vectors.
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idea ofmirror descent is to replace this quadratic expression by themore generalBregman
divergence

D(x′ , x) = h(x′) − h(x) − ⟨∇h(x), x′ − x⟩, (2.45)

induced by a “distance-generating function” h on X . More precisely, we have:

Definition 2.2. Let h∶V → R ∪ {∞} be a proper l.s.c. convex function on V . We say Distance-generating
functions and
prox-mappings

that h is a distance-generating function (DGF) on X if

1. The effective domain of h is dom h = X .

2. The subdifferential of h admits a continuous selection; specifically, writing X ○ ≡
dom ∂h = {x ∈ X ∶ ∂h(x) ≠ ∅} for the domain of ∂h, we assume there exists a

continuous mapping ∇h∶X ○ → Y such that ∇h(x) ∈ ∂h(x) for all x ∈ X ○.

3. h is K-strongly convex relative to ∥⋅∥; in particular

h(x′) ≥ h(x) + ⟨∇h(x), x′ − x⟩ + K
2
∥x′ − x∥2 (2.46)

for all x ∈ X ○ and all x′ ∈ X .

The Bregman divergence D∶X ○ ×X → R induced by h is then given by Eq. (2.45), and

the associated prox-mapping P∶X ○ ×Y → X is defined as

Px(y) = argmin
x′∈X

{⟨y, x − x′⟩ + D(x′ , x)} for all x ∈ X ○, y ∈ Y , (2.47)

Remark 2.2. In a slight abuse of notation, when X is understood from the context, we

will not distinguish between h and its restriction h∣X on X .
Remark 2.3. The notion of a distance-generating function is essentially synonymous to

that of a regularizer as described in the definition of (FTRL). Regrettably, there is no

consensus in the literature regarding terminology and notation: the names “Bregman

function” and “link function” are also common for different variants of Definition 2.2. For

an entry point to this literature, we refer the reader to Alvarez et al. [4], Beck and Teboulle

[12], Bregman [27], Bubeck and Cesa-Bianchi [30], Chen and Teboulle [37], Juditsky

et al. [73], Kiwiel [77], Nemirovski et al. [109], Nesterov [110], Shalev-Shwartz [136], and

references therein; see also Nemirovski and Yudin [108] for the origins of mirror descent

in optimization theory and beyond.

With all this in hand, the online mirror descent (OMD) policy is defined as Online mirror descent

Xt+1 = PX t(γtVt) (OMD)

where γt > 0 is a variable step-size sequence, the signals Vt are provided by a stochastic

first-order oracle as in (2.31), and P is the prox-mapping induced by some distance-

generating function onX . For concreteness, we discuss below two prototypical examples

of the method (see also Algorithm 2.3 for a pseudocode presentation):

Example 2.6. As we discussed above, the quadratic DGF h(x) = 1

2
∥x∥2 yields the Euclidean gradient

descentEuclidean prox-mapping

Px(y) = argmin
x′∈X

{⟨y, x − x′⟩ + 1

2
∥x′ − x∥2} = Π(x + y). (2.48)

Importantly, even though the rightmost side of the above expression involves the addition

of a primal and a dual vector, the middle one does not. In view of this, (OMD) is a more

natural starting point in non-Euclidean settings where the underlying norm ∥⋅∥ is not
induced by a scalar product.
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Algorithm 2.3: Online mirror descent

Require: strongly convex regularizer h; step-size sequence γt > 0
1: set X1 ← argmin h # initialization
2: for t = 1, 2, . . . do
3: incur loss ℓt(Xt) # losses revealed
4: receive signal Vt ← −[∇ℓt(Xt) +Ut] # oracle feedback
5: update Xt+1 ← PX t (γtVt) # mirror step
6: end for

Example 2.7. As another example, let X ≡ ∆(A) be the standard unit simplex of Rn ,Entropic gradients and
exponential weights and consider the entropic regularizer

h(x) = ∑
a∈A

xa log xa . (2.49)

A standard calculation shows that h is 1-strongly convex relative to the ℓ1 norm, and the

induced prox-mapping may be written as

Px(y) =
(xa exp(ya))a∈A
∑a∈A xa exp(ya)

. (2.50)

We thus obtain the entropic gradient descent (EGD) algorithm of Beck and Teboulle [12]:

Xa ,t+1 =
Xa ,t exp(γtVa ,t)

∑a′∈A Xa′ ,t exp(γtVa′ ,t)
. (EGD)

In the multi-armed bandit literature (where Vt is a possibly perturbed version of the

t-th stage payoff vector vt), this algorithm is known as exponential weights (EW), and it

dates back at least to the seminal work of Vovk [150], Littlestone and Warmuth [85], and

Auer et al. [7] (see also Example 2.10 below). For a survey, we refer the reader to Arora

et al. [6], Bubeck and Cesa-Bianchi [30], and references therein.

We now turn to the basic regret guarantees of (OMD). The main result in this regard

is as follows:

Theorem 2.4 (Shalev-Shwartz, 2007). Suppose that (OMD) is run against a sequence ofRegret of OMD
loss functions satisfying Assumptions 2.1 and 2.2 with a constant step-size γt ≡ γ > 0 and
SFO feedback of the form (2.31). Then, the algorithm’s regret is bounded as

Reg(T) ≤ H
γ
+ γ
2K

T

∑
t=1

M2
t + diam(X )

T

∑
t=1

Bt (2.51)

where K is the strong convexity modulus of h and H ≡ max h −min h denotes its “depth”
over X . In particular, if M ≡ supt Mt < ∞ and (OMD) is run with step-size γ =
(1/M)

√
2KH/T, the algorithm enjoys the bound

Reg(T) ≤ [M
√
(2H/K)T + diam(X )

T

∑
t=1

Bt]. (2.52)

Corollary 2.5. If (OMD) is run with unbiased SFO feedback (Bt = 0 for all t), we have

Reg(T) ≤ M
√
(2H/K)T . (2.53)

Finally, if the oracle is perfect (Ut = 0), the incurred regret is bounded as

Reg(T) ≤ L
√
(2H/K)T . (2.54)
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Compared to (OGD), the main difference between Theorems 2.2 and 2.4 is the factor

2H/K (and, of course, the norm defining L and M). This factor depends on the choice

of h in a scale-invariant way (i.e., it remains invariant if h is multiplied by a constant), so

finetuning the choice of h to the problem at hand is not always easy. However, in many

cases of practical interest, this can be accomplished with remarkable efficiency:

Example 2.8. Going back to Example 2.7, the entropic regularizer (2.49) has strong Bandits revisited
convexity modulus K = 1 and its depth over X = ∆(A) is

H = max h −min h = 0 − ∑
a∈A
(1/n) log(1/n) = log n. (2.55)

Hence, if (EGD) is run against a multi-armed bandit with payoffs in [−1, 1] (meaning

that L = 1 in the ℓ∞ norm), we obtain the regret bounds

Reg(T) ≤
√
2T log n (2.56a)

and

Reg(T) ≤ M
√
2T log n (2.56b)

corresponding respectively to the perfect and imperfect feedback case (withE[V 2
a ,t ∣Ft] ≤

M2 for the latter). By comparison, the corresponding bounds for (OGD) are Reg(T) ≤
2
√
nT and Reg(T) ≤ 2M

√
nT (for perfect and imperfect feedback respectively), so

(EGD) improves on (OGD) by a factor of Θ̃(n) in the context of MAB problems.

In short, even though (OMD) enjoys the sameO(
√
T) regret guarantees as (OGD),

the multiplicative constants involved may provide a massive improvement relative to

the problem’s dimension. This is of immense value to real-world machine learning and

Big Data problems that suffer from the so-called “curse of dimensionality”. As a result,

the principled design of tailor-made OMD policies for arbitrary problems has attracted

considerable interest in the literature and remains a vigorously researched question.

2.2.5 Dual averaging and the link between FTRL and OMD

We close this section by discussing an important relation between (FTRL) and (OMD). FTRL and OGD in
unconstrained problemsTo see it, consider an unconstrained linear problem with action set X = Rn , regular-

ization function h(x) = 1

2
∥x∥2, and linear losses of the form ℓt(x) = −⟨vt , x⟩ for some

sequence vt ∈ Rn . In this case, (FTRL) gives

Xt+1 = argmin
x∈X

{
t

∑
s=1

ℓs(x) +
1

γ
h(x)} = argmin

x∈Rn
{∥x∥2 − 2γ

t

∑
s=1
⟨vs , x⟩}

= argmin
x∈Rn

∥x − γ
t

∑
s=1
⟨vs , x⟩∥

2

= γ
t

∑
s=1

vs = γ
t−1
∑
s=1

vs + γvt = Xt + γvt (2.57)

i.e., we get the (unprojected) gradient update of (OGD). This is an instance of a much

more general link between (FTRL) and (OMD) which we discuss in detail below.

To begin, we introduce a variant of (FTRL) which only requires first-order oracle Linearizing FTRL
information – i.e., the same type of feedback as (OMD). The main idea behind this

modification is to replace ℓt(x) in (FTRL) with the linear surrogate

ℓ̃t(x) = ℓt(Xt) + ⟨∇ℓt(Xt), Xt − x⟩ (2.58)

which induces the update rule

Xt+1 = argmin
x∈X

{
t

∑
s=1

ℓ̃s(x) +
1

γ
h(x)} = argmax

x∈X
{γ

t

∑
s=1
⟨∇ℓs(Xs), x⟩ − h(x)}. (2.59)
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X ⊆ V

Y = V∗

Q

Y1
Y2
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+γ1V1 +γ2V2
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Figure 2.3: Schematic representation of dual averaging.

Algorithm 2.4: Dual averaging

Require: mirror map Q∶Y → X; step-size sequence γt > 0
1: choose Y1 ∈ Y # initialization
2: for t = 1, 2, . . . do
3: play Xt ← Q(Yt) # choose action
4: incur loss ℓt(Xt) # losses revealed
5: receive signal Vt ← −[∇ℓt(Xt) +Ut] # oracle feedback
6: update Yt+1 ← Yt + γtVt # dual step
7: end for

In contrast to (FTRL), this policy only requires first-order information on ℓt (and, of
course, coincides with (FTRL) in the case of linear losses). Taking this a step further,

if the feedback available to the optimizer is a gradient signal Vt of the form (2.31), we

obtain the follow-the-linearized-leader (FTLL) policy

Xt+1 = argmax
x∈X

{γ
t

∑
s=1

Vs − h(x)}. (FTLL)

In turn, written in recursive form, (FTLL) yields the dual averaging (DA) methodDual averaging

Yt+1 = Yt + γtVt

Xt+1 = Q(Yt+1)
(DA)

where:

1. Yt ∈ Y is an auxiliary dual variable that aggregates gradient steps.

2. γt > 0 is a (variable) step-size parameter.

3. Q∶Y → X is the so-called “mirror map” of h and is defined as

Q(y) = argmax{⟨y, x⟩ − h(x)} for all y ∈ Y . (2.60)

The terminology “dual averaging” is due to Nesterov [111] and alludes to the fact

that gradients are “averaged” in the dual space Y ≡ V∗ (where they belong) before

being “mirrorred” back to the problem’s feasible region X ⊆ V . By contrast, in the

online learning literature, (DA) is often referred to as the “lazy” variant of OGD/OMD

[136, 157].7 For concreteness, we provide some key examples below (see also Fig. 2.3 for a

schematic representation and Algorithm 2.4 for a pseudocode implementation):

Example 2.9. Returning to the Euclidean framework of Example 2.6, the quadraticLazy gradient descent

7 In this context, the original incarnation of OGD/OMD is referred to as “greedy” or “eager”.
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Figure 2.4: Lazy vs. eager gradient descent.

regularizer h(x) = 1

2
∥x∥2 on X ∈ Rn yields the mirror map

Q(y) = argmax
x∈X

{⟨y, x⟩ − 1

2
∥x∥2} = argmin

x∈X
∥x − y∥2 = Π(y) (2.61)

where Π(y) denotes the Euclidean projection (2.32) of y ∈ Rn onto X . In this way, we

obtain the lazy gradient descent (LGD) policy:

Yt+1 = Yt + γtVt

Xt+1 = Π(Yt+1)
(LGD)

The adjective “lazy” refers to the fact that the algorithm aggregates gradient steps “lazily”

(i.e., without transporting them to the state at which they were generated), and only

projects to X in order to generate a new gradient signal. In view of this, (LGD) agrees

with (OGD) when X is an affine subspace of Rn , but not otherwise; we illustrate the

difference between the two algorithms in Fig. 2.4.

Example 2.10. Going back to Example 2.7, a straightforward calculation shows that the Hedge and
exponential weightsmirror map associated to the entropic regularizer h(x) = ∑a∈A xa log xa over the unit

simplex X = ∆(A) is the logit choicemap

Λ(y) = (exp(y1), . . . , exp(yn))
exp(y1) +⋯ + exp(yn)

(2.62)

which, in turn, leads to the so-called “Hedge” policy8

Yt+1 = Yt + γtVt

Xt+1 = Λ(Yt+1)
(Hedge)

Unfolding the above, we readily get

Xa ,t+1 ∝ exp(Ya ,t + γtVa ,t)∝ Xa ,t exp(Va ,t) (2.63)

which, given the constant normalization∑a Xa ,t = 1, implies that the sequence of iterates

of (Hedge) is the same as (EGD). In other words, in the case of entropic regularization,

the “lazy” and “eager” variants of (OMD) coincide.

8 The terminology “Hedge” is due to Auer et al. [7]. The algorithm is also referred to as the exponential weights
(EW) ormultiplicative weights (MW) algorithm [6, 35].
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The two examples above suggest that the choice of distance-generating function plays

an important role in determining the link between (DA) and (OMD). As we show below,

the precise relation is determined by the subdifferentiability of h:

Proposition 2.6. Consider the eager and lazy update rulesWhen eager and lazy
schemes coincide

xeager = Px(w) (2.64a)

x lazy = Q(y +w) (2.64b)

where the impulse vector w ∈ V∗ is arbitrary and, for consistency, the initial points x ∈ X
and y ∈ Y satisfy x = Q(y). Suppose further that y−∇h(x) annihilates all tangent vectors
to X at x, i.e.,

⟨y −∇h(x), x′ − x⟩ = 0 for all x′ ∈ X . (2.65)

Then, xeager = x lazy.

Corollary 2.7. If X ○ ≡ dom ∂h = ri(X ), then xeager = x lazy for all x ∈ X ○.

Proof. By the definitions (2.47) and (2.60) of P and Q respectively, we have:

Px(w) = argmin
x′∈X

{⟨w , x − x′⟩ + D(x′ , x)}

= argmin
x′∈X

{⟨w , x − x′⟩ + h(x′) − h(x) − ⟨∇h(x), x′ − x⟩}

= argmin
x′∈X

{⟨w , x − x′⟩ + h(x′) − h(x) − ⟨y, x′ − x⟩}

= argmax
x′∈X

{⟨y +w , x′⟩ − h(x′)} = Q(y +w) (2.66)

i.e., xeager = x lazy, as claimed.

Heuristically, Proposition 2.6 implies that the lazy and eager variants of (OMD)Steepness
coincide as long as h becomes “steep” at the boundary of X , i.e.,

lim
k→∞
∥∇h(xk)∥∗ =∞ whenever lim

k→∞
xk ∈ bd(X ). (2.67)

The two prototypical examples discussed above illustrate this dichotomy particularly

well: in the Euclidean case, the inclusion ri(X ) ⊆ dom ∂h is proper (at least when X is

not an affine space), so the lazy and eager variants of (OMD) are different; by contrast,

the entropic regularizer has ri(X ) = dom ∂h, so the lazy and eager variants coincide.

We close this section by noting that, irrespective of steepness, the lazy and eager

variants of (OMD) enjoy the same regret bounds. Specifically:

Theorem 2.8. Suppose that (DA) is run against a sequence of loss functions satisfyingRegret of DA
Assumptions 2.1 and 2.2 with a constant step-size γ and SFO feedback of the form (2.31).
Then, the incurred regret satisfies (2.51) and Corollary 2.5 applies.

On account of the above, we will make little distinction between the lazy and eager

variants of (OMD) and we will frequently drop the lazy/eager characterization altogether.

In particular, in view of the optimal no-regret properties of mirror descent methods, we

will often treat them as synonymous with “no-regret learning”.

2.3 the multi-agent viewpoint : games and equilibrium

Up to this point, the environment generating the agent’s rewards was treated as an

abstract “adversary”, a black box with no individual stake in the game. In this section, we

take a more detailed look at multi-agent learning – and, specifically, learning in games.
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2.3.1 Basic definitions and examples

In its most basic form, a “game” is a mathematical framework for modeling strategic Non-cooperative games
interactions between optimizing agents with different individual objectives – the players
of the game. Of course, there is an extensive taxonomy of game-theoretic models

depending on the type of players involved (e.g., atomic vs. non-atomic), the nature

of the players’ interactions (whether they are sequential or simultaneous, cooperative

or non-cooperative), and/or the way these interactions determine the agents’ rewards.

However, there are three principal components that are present throughout this diverse

landscape: i) the players of the game; ii) each player’s set of actions; and iii) the players’
payoff functions. Specifying these three elements goes a long way in defining the relevant

solution concepts and what may or may not be learnable in this context.

Building on the online optimization framework of the previous sections, we will Continuous games
focus almost exclusively on non-cooperative games with a finite number of players

and continuous action spaces; in the spirit of Debreu [48], such games will be called

continuous games. Concretely, in a continuous game, players are indexed by a finite

set N = {1, . . . ,N}, and every player i ∈ N is assumed to select an action x i from
a compact convex subset Xi of an ambient, finite-dimensional space Vi ≅ Rn i . The

reward of the i-th player is then determined by their individual action and the action

x−i ≡ (x1 , . . . , x i−1 , x i+1 , . . . , xN) of the player’s opponents.9
More precisely, writing X ≡ ∏i∈N Xi for the game’s action space and V ≡ ∏i∈N Vi

for the corresponding ambient space, we assume that each player’s reward is determined

by a continuous payoff (or utility) function u i ∶X → R which maps an action profile

x = (x i ; x−i) ≡ (x1 , . . . , xN) ∈ X to its associated reward u i(x). A continuous game will
then be a tuple G ≡ G(N ,X , u) with players, action spaces and payoffs defined as above.

We describe below some important examples of continuous games:

Example 2.11. In a finite game, each player i ∈ N chooses a pure strategy a i from Finite games and their
mixed extensionsa finite set Ai . The players’ payoffs are then determined by the pure strategy profile

a = (a1 , . . . , aN) and a collection of payoff functions u i ∶A ≡∏ jA j → R, i = 1, . . . ,N .

In themixed extension of a finite game, players are allowed to randomize their decisions

by playingmixed strategies, i.e., probability distributions x i = (x i a i )a i∈Ai ∈ ∆(Ai) with
the interpretation that x i a i represents the probability of choosing action a i ∈ Ai (i.e., as

in multi-armed bandits). In this case (and in a slight abuse of notation), the expected

payoff to player i under the mixed strategy profile x ≡ (x i ; x−i) = (x1 , . . . , xN) is

u i(x i ; x−i) = ∑
a1∈A1

⋯ ∑
aN∈AN

u i(a1 , . . . , aN) x1,a1⋯xN ,aN . (2.68)

Since each player’s mixed strategy space Xi = ∆(Ai) is convex and u i is individually

linear in x i , mixed extensions of finite games are obviously continuous games. When

we need to distinguish between a finite game and its mixed extension, we will write

Γ ≡ Γ(N ,A, u) for the former and ∆(Γ) for the latter.

Example 2.12. Consider a saddle-point problem of the general form Zero-sum games

min
x1∈X1

max
x2∈X2

Φ(x1 , x2) (SP)

where each Xi , i = 1, 2, is a compact convex subset of Rn i and the value function

Φ∶X1 ×X2 → R is assumed jointly continuous. This problem is the protypical example

of a zero-sum game with player setN = {1, 2} and payoff functions u1 = −Φ and u2 = Φ.

Zero-sum games of this type have been at the core of game-theoretic research from its

9 We use here the notation “−i” for the family of indicesN−i ≡ N /{i}.
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earliest steps in the late 1920’s [149] to its most recent and successful applications in

machine learning and artificial intelligence [56].

Example 2.13. Consider a service provider with a splittable good that is to be auctionedKelly auctions
off (bandwidth, ad display time, etc.). Specifically, fractions of this good can be leased to

N bidders (players) who can place monetary bids x i ≥ 0 for each good up to their total

budget b i . Once all bids are in, the good is sliced out proportionally to each player’s bid,

with the i-th player getting ρ i = x i/(c +∑ j∈N x j) units of the auctioned good (where

c ≥ 0 represents an “entry barrier” for bidding). A simple model for the utility of player

i is then given by

u i(x i ; x−i) = iρ i − x i , (2.69)

with i denoting the marginal gain of player i from acquiring a unit of goods. Writing

Xi = [0, b i] for the action space of player i, the game G ≡ G(N ,X , u) is known as the

Kelly auction [75] and is one of the principal models for auctions with splittable goods.10

Example 2.14. Consider a finite setN = {1, . . . ,N} of firms, each supplying the marketCournot competition
with a quantity x i ∈ [0,C i] of some good (or service) up to the firm’s production capacity

C i . This good is then priced as a decreasing function P(x) of each firm’s production;

for concreteness, we focus on the linear model P(x) = a −∑i b ix i where a is a positive

constant and the coefficients b i > 0 reflect the price-setting power of each firm.

In this model, the utility of firm i is given by

u i(x) = x iP(x) − c ix i , (2.70)

where c i represents the marginal production cost of firm i. Switching from costs to

rewards, the resulting game G ≡ G(N ,X ,−c) is known as a Cournot competition game
and plays a central role in oligopoly theory.

Example 2.15. Congestion games are game-theoretic models that arise in the study ofCongestion games
traffic networks (such as the Internet) [17, 125, 129]. To define them, fix a set of players

N = {1, . . . ,N} that share a set of resources r ∈ R, with each resource associated to a

nondecreasing convex cost function cr ∶R+ → R (for instance, links in a data network

and their corresponding delay functions). Each player i ∈ N has a certain traffic demand
ρ i > 0 which is split over a collection Pi ⊆ 2R of resource subsets p i ofR – e.g., sets of

links that form origin-destination paths in the network.

In this setting, the action space of each player i ∈ N is defined as the scaled simplex

Xi = ρ i ∆(Pi) = {x i ∈ RPi
+ ∶ ∑p i∈Pi

x i ,p i = ρ i} of load distributions overPi . Then, given

a load profile x = (x1 , . . . , xN), costs are determined based on the utilization of each

resource as follows: First, the demand wr of the r-th resource is defined as the total load

wr = ∑i∈N ∑p i∋r x i ,p i on said resource. This demand incurs a cost cr(wr) per unit of
load to each player utilizing resource r, where cr ∶R+ → R is a nondecreasing convex

function. Accordingly, the total cost to player i ∈ N is

c i(x) = ∑
p i∈Pi

x i ,p i c i ,p i (x), (2.71)

where c i ,p i (x) = ∑r∈p i cr(wr) is the cost incurred to player i by the utilization of p i ∈
Pi . Switching again from costs to rewards, the resulting N-person continuous game

G ≡ G(N ,X ,−c) is called an atomic splittable congestion game.

10 E. Altman pointed out to me that the class of rent-seeking games considered by Tullock [146] is essentially

equivalent to the Kelly auction described above. However, seeing as the motivation of rent-seeking games is

not related to the setting in hand, we will use the term “Kelly mechanism” throughout.
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2.3.2 Nash equilibrium

Themost prevalent solution concept in game theory is that of a Nash equilibrium, defined

here as an action profile x∗ ∈ X that is resilient to unilateral deviations. More formally,

we have the following definition:

Definition 2.3. An action profile x∗ ∈ X is said to be a Nash equilibrium (NE) of the Nash equilibrium
continuous game G ≡ G(N ,X , u) if

u i(x∗i ; x∗−i) ≥ u i(x i ; x∗−i) for all x i ∈ Xi and all i ∈ N . (NE)

If (NE) holds as a strict inequality for all deviations x i ≠ x∗i and all players i ∈ N , we will

say that x∗ is a strict Nash equilibrium. The set of Nash equilibria of G will be denoted

throughout as X ∗ ≡ NE(G).

The existence of equilibria in the class of convex-concave zero-sum games (i.e., the Existence
setting of Example 2.12 with Φ convex-concave) was first discussed by von Neumann

(1928). The second groundbreaking equilibrium existence result (and the namesake of the

concept) is due to Nash (1951), who showed that any finite game admits an equilibrium

in mixed strategies (or, more formally, that the mixed extension of any finite game

admits a Nash equilibrium). Finally, unifying these two existence results, Debreu (1952)

showed that any continuous gamewith compact action spaces admits a Nash equilibrium,

provided the following individual concavity assumption holds:11

u i(x i ; x−i) is concave in x i for all x−i ∈ X−i , i ∈ N . (2.72)

FollowingRosen [122], games satisfying the individual concavity assumption (2.72) are Concave games
called concave games. The class of concave games is particularly rich and has a broad range

of applications in signal processing, wireless communications, economics, and many

other disciplines [91, 113, 134]. In particular, a quick check reveals that Examples 2.11–2.15

are all concave (provided that Φ is convex-concave in Example 2.12).

In concave games with smooth payoff functions,12 Nash equilibria can also be charac- Variational
characterizationterized via the first-order optimality condition

⟨Vi(x∗), x i − x∗i ⟩ ≤ 0 for all x i ∈ Xi , i ∈ N , (2.73)

where Vi(x) denotes the (negative) individual payoff gradient of the i-th player,i.e.,

Vi(x) = ∇x iu i(x i ; x−i), (2.74)

and ∇x i denotes differentiation with respect to the variable x i . This variational charac-

terization of Nash equilibria can be written more concisely (but otherwise equivalently)

as a variational inequality of the form

⟨V(x∗), x − x∗⟩ ≤ 0 for all x ∈ X (VI)

where

V(x) = (V1(x), . . . ,VN(x)) (2.75)

11 In fact, Debreu [48] only required quasi-concavity and considered the case where the feasible actions of a

given player may depend on the actions chosen by another player. We will not work at this level of generality.

12 There is a recent tendency in machine learning to refer to such games as differentiable games – see e.g., Balduzzi
et al. [10] and many of the references therein. Given the extensive literature on differential games (which

contains pursuit-evasion and mean-field models), this terminology is, at best, unfortunate. Given the work of

[49] on smooth preference models, the adjective “smooth” seems more appropriate in this context. This is the

terminology used by Laraki et al. [83], but it conflicts in turn with the concept of “(λ, µ)-smoothness” for

finite games; mathematically, I find “smoothness” to be a meaningless term in finite games, but its use is fairly

entrenched in the algorithmic game theory literature.
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Figure 2.5: Variational characterization of Nash equilibria in concave games.

denotes the players’ individual payoff gradient profile at x ∈ X . By contrast, if G is not
concave, (VI) only determines the game’s critical points, i.e., those profiles for which an

O(ε) unilateral deviation cannot increase the payoff of the deviating player by more

thanO(ε2). [For a schematic illustration, see Fig. 2.5.]

Example 2.16. As an example, in the context of finite games (cf. Example 2.11), the

players’ individual payoff gradient field can be written in components as

Vi a i (x) =
∂u i

∂x i a i

= ∑
a′
1
∈A1

⋯ ∑
a′N∈AN

x1,a′
1
⋯ δa i ,a′i⋯ xN ,a′N u i(a′1 , . . . , a′N)

= u i(a i ; x−i) ≡ u i a i (x). (2.76)

In other words, Vi a i (x) is simply the payoff u i a i (x) ≡ u i(a i ; x−i) to player i when they

select a i ∈ Ai against the mixed strategy profile x−i ∈ X−i of i’s opponents.

In terms of equilibrium uniqueness, Rosen [122] used a variational characterizationUniqueness
similar to (VI) to establish the following sufficient condition:

Theorem 2.9 (Rosen, 1965). Assume that G satisfies the payoff monotonicity condition

⟨V(x′) − V(x), x′ − x⟩ ≤ 0 for all x , x′ ∈ X , (MC)

with equality if and only if x = x′. Then, G admits a unique Nash equilibrium.

Owing to the link between (MC) and the theory of monotone operators, we willMonotone games
refer to games satisfying (MC) as monotone games.13 More precisely, mirroring the

corresponding terminology from operator theory, we will say that a game is:

1. Monotone if it satisfies (MC).

2. Strictly monotone if (MC) holds as a strict inequality whenever x′ ≠ x.

3. Strongly monotone if there exists a positive constant α > 0 such that

⟨V(x′) − V(x), x′ − x⟩ ≤ −α∥x′ − x∥2 for all x , x′ ∈ X . (2.77)

13 Rosen [122] uses the name diagonal strict concavity (DSC) for a weighted variant of (MC) which holds as a strict

inequality when x′ ≠ x. Hofbauer and Sandholm [65] use the term “stable” to refer to a class of population

games that satisfy a condition similar to (MC), while Sandholm [130] and Sorin and Wan [140] respectively

call such games “contractive” and “dissipative”. We use the term “monotone” throughout to underline the

connection of (MC) with operator theory and variational inequalities (though operator monotonicity is usually

defined with the opposite sign to be consistent with function minimization in convex optimization).
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Obviously, “strongly monotone” ⊊ “strictly monotone” ⊊ “monotone”, just as in the

chain of inclusions “strongly convex” ⊊ “strictly convex” ⊊ “convex” for convex func-

tions. Moreover, letting x′−i = x−i in (MC), we get

⟨Vi(x′i ; x−i) − Vi(x i ; x−i), x′i − x i⟩ ≤ 0 for all x i , x′i ∈ Xi , x−i ∈ X−i . (2.78)

This means that the individual payoff gradient Vi(x) of the i-th player is itself monotone

in x i , implying in turn that u i(x) is concave in x i for all i [11]. Hence, any game satisfying

(MC) is a fortiori concave.

In regard to the examples discussed earlier in this section, Example 2.12 is monotone

when Φ is convex-concave; the games in Examples 2.13 and 2.14 are both strictly mono-

tone; 14 and the atomic splittable congestion games of Example 2.15 are also monotone

in networks with parallel links and convex latency functions [115]. Together with Rosen’s

uniqueness theorem,15 the wide variety of applications in which (MC) holds makes the

class of monotone games a particularly rich and interesting one.

2.3.3 Correlated and coarse correlated equilibrium

correlated equilibrium . A common critique of Nash equilibrium is that a

player has no incentive to commit to their component of an equilibrium strategy unless all

other players are also expected to play theirs. This argument gains additional momentum

if the game in question has multiple Nash equilibria: in that case, even players with

unbounded deductive capabilities would be hard-pressed to choose a strategy. This

point of view led Aumann [8, 9] to introduce the notion of a correlated equilibrium (CE),

where subjective beliefs are also taken into account.16

For simplicity, we will define correlated equilibria in the context of finite games where Correlation and
subjective beliefscomplicated measurability issues do not arise (what this means will become clear below).

To do so, let Γ ≡ Γ(N ,A, u) be a finite game in normal form (cf. Example 2.11) and,

following Aumann [9], assume that the players’ beliefs are formed by observing the

“state of the world”, i.e., an event drawn from some (finite) probability space (Ω,P).17
This data is observed, recorded and processed by the players, who then choose an action

based on their individual – but otherwise correlated – assessment of their surroundings.

More formally, define a correlated strategy as a map π∶Ω → A ≡∏i Ai whose compo- Correlated strategies
nents π i ∶Ω → Ai determine the response π i(ω) ∈ Ai of the i-th player when the world

is at state ω ∈ Ω. Then, if we write

χa ≡ χa1 , . . . ,aN = P{ω ∶ π(ω) = a}. (2.79)

14 For a proof in the case of Kelly auctions, see Bravo et al. [26]; for Cournot oligopolies, monotonicity follows

from the fact that the game admits a concave potential in the sense of Monderer and Shapley [103].

15 An immediate generalization of Theorem 2.9 is that the set of Nash equilibria of a monotone game is convex

and compact even if the game is not strictlymonotone (in which case its Nash set is a singleton). All in all,

the link between variational inequalities and Nash equilibria has given rise to an extensive literature at the

interface of game theory and optimization; for an overview, we refer the reader to Facchinei and Pang [50],

Mertikopoulos and Zhou [97], and references therein.

16 A few years later, Brian Arthur [28] put forth another argument for the use of correlated equilibrium as a

predictive tool: while humans are onlymoderately strong in problems that can be solved by deductive reasoning
(they do better than animals but much worse than computers), they excel in intuition and in solving problems

by inductive reasoning. Since this “intuitive” approach rests heavily on what players believe is going on around

them, an equilibrium is only reachable if it also takes into account these beliefs.

17 Of course, this brings up the issue of exactly what kind of information is actually observable by a player. To

account for that, Aumann partitions Ω in player-specific σ-algebras which determine whether an event is

“observable” (measurable) by a player or not. To keep our discussion as simple as possible, we will not concern

ourselves with this issue here.
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for the probability of observing the profile a = (a1 , . . . , aN) ∈ A, a correlated strategy can
also be viewed as an element of the simplex Xc ≡ ∆ (∏i Ai) = {x ∈ RA+ ∶ ∑a∈A xa = 1}.
On that account, we will interchangeably refer to both π and χ as a correlated strategy,

and we will only distinguish between the two when there is danger of confusion.

Clearly, the space of correlated strategies contains the simplex X ≡ ∏i ∆(Ai) of
mixed strategies as the subset of uncorrelated strategies. Specifically, if we denote the

marginals of χ as
x i a i ≡ P(π i = a i) (2.80)

the condition χa =∏i x i a i which characterizes mixed srategies holds if and only if the

individual components of π are stochastically independent (viewed here as random

variables in their own right). Thus, under a slight abuse of notation, the expected payoff

to the i-th player in a correlated strategy χ ∈ Xc may be written as

u i(π) = ∑
a∈A

P{ω ∶ π(ω) = a}u i(a) = ∑
a1∈A1

⋯∑
aN∈AN

χa1 , . . . ,aN u i(a1 , . . . , aN). (2.81)

Heuristically, a correlated strategy π may be viewed as a “coordination device” that

outputs a specific recommendation π i(ω) to each player i ∈ N when the state of the

world is ω ∈ Ω. The notion of a correlated equilibrium posits that a player has no

incentive to deviate from this recommendation when averaging over all states:

Definition 2.4. A correlated strategy π∗ is a correlated equilibrium (CE) of the finiteCorrelated equilibrium
game Γ ≡ Γ(N ,A, u) if

u i(π∗) ≥ u i(π i ; π∗−i) (CE)

for all players i ∈ N and all strategies π i ∶Ω → Ai that factor through π∗i (i.e., π i = σi ○π∗i
for some strategy modification σi ∶Ai → Ai). The set of correlated equilibria of Γ will be

denoted throughout as X ∗c ≡ CE(Γ).

At first sight, the factoring requirement might appear artificial, but it is a vital in-

gredient of the definition of correlated strategies. Indeed, a given player i ∈ N may

either follow the recommendation π∗i (ω) of an equilibrium strategy π∗i , or disregard
it altogether and play something different. However, since the only information that

reaches the player in this picture is the recommendation π∗i (ω) (and not the actual state
ω), the player’s action may only depend on π∗i (ω), i.e., be of the form σi(π∗i (ω)) for
some endomorphism σi ∶Ai → Ai .

An alternative characterization of (CE) which highlights precisely this feature ofProbabilistic
characterization correlated equilibria is obtained by the simple rearrangement:

u i(π i ; π∗−i) = ∑
a i∈Ai

∑
a−i∈A−i

P(π i = a i ; π∗−i = a−i)u i(a i ; a−i)

= ∑
a i∈Ai

∑
a−i∈A−i

( ∑
a′i ∶σ i(a′i)=a i

P(π∗i = a i ; π∗−i = a−i))u i(a i ; a−i)

= ∑
a i∈Ai

∑
a−i∈A−i

χ∗a i ;a−i u i(σi(a i); a−i). (2.82)

The correlated equilibrium condition (CE) may thus be rewritten as:

∑
a i∈Ai

∑
a−i∈A−i

χ∗a i ;a−i [u i(a i ; a−i) − u i(a−i ; σi(a i))] ≥ 0 (2.83)

for all players i ∈ N and all maps σi ∶Ai → Ai . More explicitly, we have:
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Proposition 2.10 (Aumann, 1987). A correlated strategy χ∗ ∈ Xc is a correlated equilib-
rium of a finite game Γ ≡ Γ(N ,A, u) if and only if

∑
a−i∈A−i

χ∗a i ;a−iu i(a i ; a−i) ≥ ∑
a−i∈A−i

χ∗a i ;a−iu i(a′i ; a−i) (2.84)

for all i ∈ N and all a i , a′i ∈ Ai .

Remark 2.4. If x∗i a i
> 0, we may divide both sides of (2.84) by x∗i a i

to obtain the condi-

tional version:

∑
a−i∈A−i

P(π∗−i = a−i ∣π∗i = a i)u i(a i ; a−i) ≥ ∑
a−i∈A−i

P(π∗−i = a−i ∣π∗i = a i)u i(a′i ; a−i) (2.85)

where, in obvious notation, P(π∗−i = a−i ∣ π∗i = a i) denotes the conditional probability

P(π∗−i = a−i ∣ π∗i = a i) =
P(π∗ = a)
P(π∗i = a i)

. (2.86)

This last form of (2.84) highlights even more clearly the idea of deviating from an

equilibrium recommendation.

Algebraically, Proposition 2.10 shows that correlated equilibria can be computed Nash vs. correlated
equilibriaefficiently by solving a system of linear inequalities (i.e., by solving a linear problem). By

contrast, finding a Nash equilibrium is PPAD-complete (i.e.,much harder) [43–46]. The

relation between the two sets is given by the following straightforward result:

Proposition 2.11 (Aumann, 1987). The set of correlated equilibria of a finite game is a
nonempty convex polytope which contains the convex hull of the game’s Nash equilibria.

To the best of the author’s knowledge, this inclusion seems to be the strongest universal

statement relating these two notions of equilibrium.

coarse correlated equilibrium . Going beyond correlated equilibria, the

notion of a coarse correlated equilibrium replaces the pairwise comparison in the char-

acterization (2.84) of correlated equilibria with a “coarse” averaging scheme. Tracing its

origins to Moulin and Vial [104], we have:

Definition 2.5. A correlated strategy π∗ with law χ∗ is a coarse correlated equilibrium Coarse correlated
equilibrium(CCE) of the finite game Γ ≡ Γ(N ,A, u) if

u i(π∗) ≥ u i(a′i ; π∗i ) for all i ∈ N and all a′i ∈ Ai , (CCE)

where, in a slight abuse of notation, a′i denotes here the constant recommendation

ω ↦ a′i for all ω ∈ Ω. More explicitly, χ∗ is a CCE if

∑
a i∈Ai

∑
a−i∈A−i

χ∗a i ;a−iu i(a i ; a−i) ≥ ∑
a i∈Ai

∑
a−i∈A−i

χ∗a i ;a−iu i(a′i ; a−i) (2.87)

for all i ∈ N and all a′i ∈ Ai . The set of coarse correlated equilibria of Γ will be denoted

throughout as CCE(Γ).

Clearly, any correlated strategy satisfying (CE) also satisfies (CCE). Thus, in view of

Proposition 2.10, we have the chain of inclusions

NE(Γ) ⊆ NE(∆(Γ)) ⊆ CE(Γ) ⊆ CCE(Γ) (2.88)

where ∆(Γ) denotes the mixed extension of Γ. Importantly, these inclusions are usually

proper: NE(Γ) is often empty while the cardinality of NE(∆(Γ)) is generically odd [59];
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by contrast, CE(Γ) and CCE(Γ) are both convex polytopes, but typically of different

dimension.

In particular, regarding the difference between Definitions 2.4 and 2.5 the key pointCCE may contain
dominated strategies is that the former considers all strategy modifications of π∗i that are consistent with

the information at hand, while the latter only considers constant strategy modifications

that output the same pure action irrespective of the state of the world. Thus, given

that coarse correlated equilibria are resilient only against a very narrow and specific

class of strategy modifications, CCE(Γ)may contain correlated strategies that are not

rationalizable. Indeed, Viossat and Zapechelnyuk [148] constructed an example of a

(symmetric) 4 × 4 variant of Rock-Paper-Scissors which admits a coarse correlated

equilibrium that assigns positive probability only to strictly dominated strategies; by
contrasted, correlated equilibria cannot be supported on dominated strategies.

The above shows that the notion of a coarse correlated equilibrium is a fairly weak

solution concept, barely deserving the appellation “equilibrium”.18 As we shall see in the

sequel, coarse correlated equilibria are learnable by players that follow a no-regret policy

[20, 35, 60];19 however, this begs the question of what exactly is being learned. Much of

the analysis to come focuses precisely on this question.

18 The set of coarse correlated equilibria is also called theHannan set in reference to the original work of Hannan

[57]. I find this terminology preferable, but the term coarse correlated equilibrium is fairly entrenched by now.

19 We should also note here that correlated equilibria are likewise learnable by players that follow a policy that

leads to no internal regret [60, 61]. The notion of internal regret can be difficult to define in games with

continuous action spaces, and the distinction between internal and external regret (as well as the link with

calibration and universal consistency) lies beyond the scope of this manuscript, so we will not treat this issue

here. For a relatively recent treatment, we refer the reader to Cesa-Bianchi et al. [36].
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LEARNING IN GAMES: A CONTINUOUS-TIME SKELETON

I
n this and the following chapter, our aim is to examine the long-run behavior of online

learning dynamics in a game-theoretic context. Specifically, we seek to address the

following questions:

Does no-regret learning lead to rationally admissible states?
In particular, does it converge to a Nash equilibrium?

As we discussed towards the end of the previous chapter, the counterexample of

Viossat and Zapechelnyuk [148] shows that there exist coarse correlated equilibria that

are supported only on strictly dominated strategies. Therefore, since playing a coarse

correlated equilibrium leads to no regret [35], the answer to both questions above is, in

general, a resounding “no”. Especially on the issue of convergence to Nash equilibrium,

the impossibility result of Hart and Mas-Colell [62] shatters any hope of obtaining an

unconditionally positive answer when the players’ dynamics are uncoupled – i.e., the

adjustment of a player’s strategy does not depend explicitly on the payoff functions of the

other players. All in all, as pointed out by Cesa-Bianchi and Lugosi [35, p. 205] specifying

the precise interplay between no-regret learning and Nash equilibrium is a “considerably

more difficult problem”.

In this chapter, our aim is to obtain partial positive answers to the above in a continuous- Learning in
continuous timetime framework, i.e., when the sequence of play unfolds over a continuous interval of

time t ∈ [0,∞). The reason for this is both conceptual and technical: Conceptually, it

allows us to connect our results to the extensive lite rature on game dynamics in biology

and evolutionary game theory (EGT), thus providing an important link between learning

and evolution in this context.1 From a technical standpoint, the continuous-time setting

often produces a clearer analytical picture which can subsequently serve as a scaffolding

for the discrete-time analysis, while also demystifying some trade-offs that arise therein.

We carry out the corresponding discrete-time analysis in Chapter 4.

3.1 learning dynamics

#This section summarizes results from [80, 92, 97]

Given our focus on no-regret learning, we begin by redefining the notion of regret in Regret in
continuous timea continuous-time environment. Specifically, with notation as in the previous chapter,

the regret incurred at time T ≥ 0 by a policy Xt ∈ X against a stream of loss functions

ℓt ∶X → R, t ≥ 0, is now defined as

Reg(T) = max
x∈X ∫

T

0
[ℓt(Xt) − ℓt(x)] dt (3.1)

i.e., as the continuous-time analogue of Eq. (2.9).2

1 We do not attempt to survey this literature here. For an introduction, we refer the reader to the masterful

accounts of Hofbauer and Sigmund [67], Weibull [151] and Sandholm [129, 130].

2 In the above, we tacitly assume that Xt and ℓt are both locally integrable in t so the integral in (3.1) is

well-defined. This assumption plays no role in the sequel, so there is no sense in making it explicit.

33



34 learning in games : a continuous-time skeleton

Tominimize regret in this continuous-time framework, wewill focus on the continuous-Online mirror descent
in continuous time time dual averaging dynamics

Ẏt = Vt

Xt = Q(Yt)
(CDA)

i.e., the continuous-time analogue of the (lazy) mirror descent / dual averaging algorithm

(DA) discussed in Section 2.2. In more detail, to account for the unilateral and multi-

agent viewpoints that form the basis of our analysis, we will assume that the impulse

process Vt is generated according to two different mechanisms as follows:

1. In the unilateral setting, a single optimizer is facing a stream of loss functions

ℓt ∶X → R and Vt is given by

Vt = −∇ℓt(Xt). (3.2)

2. In themulti-agent setting, we assume that the agents are involved in a continuous

game G ≡ G(N ,X , u) and each player i ∈ N is facing a stream of payoff functions

u i(⋅, X−i ,t) defined by the actions of i’s opponents. In this way, we have

Vt = V(Xt) (3.3)

where V(x) = (Vi(x))i∈N is the players’ individual payoff gradient profile (2.75).

In both cases, Yt ∈ Y ≡ V∗ is an auxiliary dual variable that aggregates gradient

signals as they arrive, and the mirror map Q∶Y → X is induced by a distance-generating

function on X as in (2.60). More explicitly, in the multi-agent case:

1. Xt = (X i ,t)i∈N ∈ X ≡∏i Xi denotes the players’ action profile at time t ≥ 0.
2. Yi ,t ∈ Yi ≡ V∗i is a player-specific gradient aggregation variable.

3. Each player is equipped with a mirror map Q i ∶Yi → Xi generated from a player-

specific regularizer h i ∶Xi → R as in (2.60).

4. The composite mirror map Q∶Y → X is defined as

Q(y) = (Q1(y1), . . . ,QN(yN)) for all y ∈ Y (3.4)

and is generated from the composite regularizer h∶X → Rwith h(x) = ∑i h i(x i).

The above setup allows us to treat the unilateral and multi-agent cases with a unified

language and notation. However, it is important to note a fundamental difference

between the two: Specifically, in the multi-agent case, the dynamics (CDA) may be

written more compactly as

Ẏt = V(Q(Yt)) (3.5)

Therefore, in the game-theoretic setup, (CDA) is an autonomous dynamical system

evolving in the dual space Y of the ambient space V ≡ ∏i Vi . By contrast, in the

unilateral setting, the impulse process Vt may depend explicitly on t, so (CDA) is a

non-autonomous system in that case.

The dynamics (CDA) will be the main focus of this chapter, so we discuss some basicExamples in
finite games examples below. For concreteness, we will state them for mixed extensions of finite

games (cf. Examples 2.11 and 2.16), in which case the players’ individual payoff gradient

field is given by the concrete expression (2.76), viz.

Vi a i (x) =
∂u i

∂x i a i

= u i(a i ; x−i) ≡ u i a i (x). (3.6)

We state two concrete examples of the induced dynamics below:
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Example 3.1. Going back to the entropic regularization framework of Example 2.10, we The replicator dynamics
obtain the exponential (or logit) learning dynamics

Ẏi a i = u i a i (X)

X i a i =
exp(Yi a i )

∑a′i∈Ai
exp(Yi a′i )

.
(XL)

In game theory, this process has been studied by Hofbauer et al. [69], Kwon and Mer-

tikopoulos [80], Rustichini [126], Sorin [139], and many others. In particular, differenti-

ating X i a i in (XL) with respect to time and substituting yields

Ẋ i a i =
Ẏi a i eYi a i ∑a′i∈Ai

eYi a′i − eYi a i ∑a′i∈Ai
Ẏi a′i e

Yi a′i

(∑a′i∈Ai
eYi a′i )

2

= X i a i

⎡⎢⎢⎢⎢⎣
Ẏi a i − ∑

a′i∈Ai

X i a′i Ẏi a′i

⎤⎥⎥⎥⎥⎦
. (3.7)

Hence, with Ẏi a i = u i a i (X), we obtain the replicator dynamics of Taylor and Jonker [143]:

Ẋ i a i = X i a i [u i a i (X) − u i(X)]. (RD)

The replicator equation is the most widely studied of evolutionary game dynamics

(by far), and its rationality properties have been the focus of an extensive literature in

evolutionary game theory and population biology. For a survey, we refer the reader to

Hofbauer and Sigmund [67], Maynard Smith and Price [88], Sandholm [129], Weibull

[151], and references therein.

Example 3.2. In the Euclidean setup of Example 2.9, we get the projection-based learning The projection dynamics
process

Ẏi a i = u i a i (X)
X = Π(Y)

(PL)

where Π(⋅) denotes here the Euclidean projector on X . Since Π is not smooth, we can

no longer use the approach of Example 3.2 to derive the dynamics of the players’ mixed

strategies X i . Instead, recall (or solve the defining convex program to show) that the

closest point projection on Xi ≡ ∆(Ai) takes the simple form

[Π(y i)]i a i = [y i a i + µ i]+ , (3.8)

where µ i ∈ R is such that∑a∈Ai
[y i a i + µ i]+ = 1. Therefore, if i is an open time interval

over which X i has constant supportA′i ⊆ Ai , a straightforward calculation detailed in

[92] yields the so-called projection dynamics:

Ẋ i a i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u i a i (X) − ∣supp(X i)∣−1 ∑
a′i∈supp(X i)

u i a′i (X) if a i ∈ supp(X i),

0 if a i ∉ supp(X i).
(PD)

These dynamics were introduced in game theory by Friedman [52] as a geometric

model of the evolution of play in population games.3 In contrast to (RD), orbits of (PL)

that begin in ri(X ) may attain a boundary face in finite time, then move to another

boundary face or re-enter ri(X ) (again in finite time), and so on (cf. Fig. 3.1). Thus,

3 [106] (see also [81] and [131]) introduce related projection-based dynamics for population games. The relations

among the various projection dynamics are explored in a companion paper [87].
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Π

Yt
Xt = Π(Yt)

(PL) (PD)

Figure 3.1: The primal-dual relation between (PL) and (PD).

although Xt may fail to be differentiable when it moves from (the relative interior of)

one face of X to another, it satisfies (PD) for all times in between. This also shows that,

while (PL) is an autonomous dynamical system, (PD) is not.

The two examples above highlight an important dichotomy in the behavior of (CDA)Forward invariance
of the relative interior in finite games: the replicator dynamics (RD) always remain in the (relative) interior of

the game’s strategy space, while the projection dynamics (PD) may enter and leave the

boundary of X in perpetuity (so strategies that are extinct may reappear over time). As

we argue below, this dichotomy has the same origin as the difference between the eager

and lazy variants of (OMD).

To see this, assume that each player’s distance-generating function h i is twice differ-Hessian–Riemannian
considerations entiable on ri(Xi), let

i(x i) = Hess(h i(x i)) (3.9)

denote its Hessian matrix, and let

H i(x i) = i(x i)−1 (3.10)

denote its inverse. Assume further that H i admits a continuous extension to each face

of Xi , and let

n i(x i) = H i(x i)1 (3.11)

where 1 = (1, . . . , 1) is a column vector of ones of the appropriate dimension. Since h i is

strongly convex, i is positive-definite. As such, i can be seen as a Riemannian metric

on ri(Xi) and, under this metric, n i(x i) is simply the unit normal to Xi at x i . We then

have the following explicit expression for the evolution of Xt in finite games:

Proposition 3.1 (Mertikopoulos and Sandholm, 2016). Let Xt = Q(Yt) be an orbit ofThe primal dynamics
(CDA) in X , and let be an open interval over which the support of Xt remains constant.
Then, for all t ∈ , Xt satisfies:

Ẋ i = [H i(X i) −
n i(X i)n i(X i)⊺

1⊺n i(X i)
]Vi(X). (3.12)

In particular, every orbit Xt = Q(Yt) of (CDA) in X is Lipschitz continuous and satisfies
(3.12) on an open dense subset of [0,∞). Furthermore, if each h i is steep in the sense of
(2.67), the system (3.12) is well-posed and Xt is an ordinary solution thereof.

Remark 3.1. In game theory, the closest antecedent to (3.12) is the “escort replicator

equation” of Harper [58]. From an optimization standpoint, (3.12) can also be seen

as a game-theoretic analogue of the Hessian–Riemannian gradient system of Bolte
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and Teboulle [21] and Alvarez et al. [4]. Similar considerations are present in the class

of adaptive dynamics studied by Hofbauer and Sigmund [66] and, later, by Hopkins

[70]; for a detailed discussion and a more extensive literature review on this topic, see

Mertikopoulos and Sandholm [93].

3.2 no-regret vs . convergence

#This section summarizes results from [80, 101]

3.2.1 Regret minimization

We now proceed to examine the no-regret properties of the dynamics (CDA) in the

unilateral case. Our main result along these lines is as follows:

Theorem 3.2 (Kwon and Mertikopoulos, 2017). Suppose that (CDA) is run against a Constant regret in
continuous timelocally integrable stream of convex loss functions ℓt ∶X → R, t ≥ 0. Then, the optimizer’s

incurred regret is bounded as
Reg(T) ≤ H (3.13)

where H = max h −min h denotes the depth of h over X .

This “constant regret” result represents a significant improvement over theO(
√
T)

worst-case bound for (OMD)/(DA) in discrete time. For this reason, the continuous-

time framework we consider here can be seen as particularly amenable to learning

because it allows players to minimize their regret at the fastest possible rate – i.e.,O(1).
At the same time however, the Ω(

√
T) minimax bound for regret minimization in

discrete time, shows that there is an important gap between the continuous and discrete

regimes.

This gap between continuous and discrete time was first observed in the context Discrete vs. continuous
timeof the Hedge / EW algorithm by Sorin [139] who derived the associated discrete-time

bound (2.56a) via a piecewise constant continuous-time approximation scheme. The

approach of Sorin [139] was subsequently extended to general online convex optimization

problems by Kwon and Mertikopoulos [80] who showed that the bound (2.51) can be

decomposed as follows: the first term represents the regret incurred by the algorithm’s

continuous-time analogue, while the second term measures the “discretization error”

when descending from continuous to discrete time. We discuss this in more detail in

Section 4.1.

3.2.2 Cycles, non-convergence, and Poincaré recurrence

In the context of finite games, an immediate corollary of Theorem 3.2 is that the em- Empirical means and
time-averagespirical frequency of play under (CDA) converges to the game’s set of CCE at a rate

of O(1/t). Specifically, given a finite game Γ ≡ Γ(N ,A, u) and a pure action profile

a = (a1 , . . . , aN) ∈ A, let
Za ,t =

1

t ∫
t

0
∏
i∈N

X i a i ,s ds (3.14)

denote the mean (“empirical”) frequency of a under the policy Xt ∈ X . Then, if Xt
is generated by (CDA), the constant regret bound (3.13) implies that Zt converges to

CCE(Γ) at a rate of 1/t [20]. On the other hand, as we pointed out before, CCE(Γ)may

contain correlated strategies that are supported only on strictly dominated strategies, so

this convergence result is fairly weak.

In particular, two natural questions that arise are:



38 learning in games : a continuous-time skeleton

1. Is the long-run behavior of Xt captured by that of its time-average

Xt =
1

t ∫
t

0
Xs ds (3.15)

or that of its correlated empirical mean Zt?

2. Is the limit behavior of Xt rationally admissible?

To take a closer look at these questions, a key notion will be that of Poincaré recurrence.
Heuristically, a dynamical system is said to be recurrent if, after a sufficiently long (but

finite) time, almost every state returns arbitrarily close to the system’s initial state.4

More formally, given a dynamical system on X that is defined by means of a semiflow
Φ∶X × [0,∞)→ X , we have:5

Definition 3.1. A point x ∈ X is said to be recurrent under Φ if, for every neighborhoodPoincaré recurrence
U of x in X , there exists an increasing sequence of times tk ↑∞ such that Φ(x , tk) ∈ U
for all k. In addition, the flow Φ is called itself Poincaré recurrent if, for every measurable

subset A of X , the set of recurrent points in A has full measure.

An immediate consequence of Definition 3.1 is that, if a point is recurrent, there

exists an increasing sequence of times tk ↑∞ such that Φ(x , tk)→ x. On that account,

recurrence can be seen as the flip side of convergence: under the latter, (almost) every

initial state of the dynamics would eventually reach a well-defined end-state; instead,

under the former, the system’s orbits fill the entire state space and return arbitarily close

to their starting points infinitely often (so there is no possibility of convergence beyond

trivial cases).

As we show below, no-regret learning may exhibit recurrent behavior, even in simple,

2-player games:

Theorem 3.3 (Mertikopoulos et al., 2018). Let Γ be a finite 2-player zero-sum gameNon-convergence in
zero-sum games admitting an interior Nash equilibrium. Then, almost every solution trajectory of (CDA)

is Poincaré recurrent; specifically, for almost every initial condition X0 = Q(Y0) ∈ X , there
exists an increasing sequence of times tk ↑∞ such that Xtk → X0.

A key element in the proof of Theorem 3.3 is that, in 2-player zero-sum games, the

dynamics (CDA) admit a constant of motion. This is given by the so-called Fenchel

coupling,6 defined here as

F(x , y) = h(x) + h∗(y) − ⟨y, x⟩ for all x ∈ X , y ∈ Y . (3.16)

Specifically, if x∗ is an interior equilibrium of Γ, we have F(x∗ ,Yt) = F(x∗ ,Y0) for all
t ≥ 0. In fact, the invariance of (3.16) under (CDA) induces a foliation of Y , with each

individual orbit of (CDA) living on a “leaf ” of the foliation (a level set of F). Fig. 3.2
provides a schematic illustration of this foliation/cycling structure in a game of Matching

Pennies.

We close this section by noting that the behavior of the time-averaged orbits X̄t ofConvergence of
time-averages (CDA) is considerably different. In fact, as was shown by Hofbauer et al. [69] and

Mertikopoulos and Sandholm [92], the time-avaraged orbits of (CDA) have the same

limit as the best-response dynamics of Gilboa and Matsui [55]. Consequently, in zero-

sum games with an interior equilibrium, X̄t always converges to Nash equilibrium,

4 Here, “almost” means that the set of such states has full Lebesgue measure.

5 Recall here that a continuous map Φ∶X × [0,∞) → X is a semiflow if Φ(x , 0) = x and Φ(x , t + s) =
Φ(Φ(x , t), s) for all x ∈ X and all s, t ≥ 0.

6 The terminology “Fenchel coupling” is taken from [97]; the link between the Fenchel coupling and the Bregman

divergence is also discussed therein. Specifically, we have F(x , y) = D(x ,Q(y)) whenever Q(y) ∈ ri(X ),
but not necessarily otherwise.
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Figure 3.2: Cycles and recurrence of no-regret learning in zero-sum games.

even though the actual trajectories of play may remain at constant distance from said

equilibrium. This disparity between the actual sequence of play and its time-average will

appear several times in the sequel and it should be taken as an important cautionary tale

for the “convergence” of no-regret learning in games.

3.3 convergence to equilibrium and rationalizability

#This section summarizes results from [92, 93, 97]

We now proceed in the opposite direction, i.e., establishing positive results for the

rationality properties of (CDA). To connect our discussion with that of the previous

section, we first present a series of results for finite games and we then move on to

continuous games towards the end of this section.

3.3.1 Positive results in finite games

We begin our rationality analysis with the elimination of dominated strategies. Formally, Dominated strategies
given a finite game Γ ≡ Γ(N ,A, u), we say that a i ∈ Ai is dominated by a′i ∈ Ai (and

we write a i ≺ a′i) if

u i a i (x) ≡ u i(a i ; x−i) < u i(a′i ; x−i) for all x−i ∈ X−i ≡∏ j≠i X j . (3.17)

If (3.17) is strict for only some (but not all) x ∈ X , we will say that a i isweakly dominated
by a′i and we will write a i ≼ a′i . Conversely, we will say that x = (a1 , . . . , aN) ∈ A is

undominated if no component of a is (strictly) dominated. Of course, if dominated

strategies strategies are removed from Γ, other strategies may become dominated in the

resulting restriction of Γ, leading to the notion of an iteratively dominated strategy. A
strategy which survives all rounds of elimination is then called iteratively undominated.
Finally, given a trajectory of play Xt ∈ X , t ≥ 0, we say that a i ∈ Ai becomes extinct along
Xt if X i a i ,t → 0 as t →∞.

Extending the classic elimination results of Akin [3], Nachbar [105] and Samuelson and

Zhang [127] for the replicator dynamics, we showbelow that only iteratively undominated

strategies survive under any no-regret learning scheme of the general form (CDA):

Theorem 3.4 (Mertikopoulos and Sandholm, 2016). Let Xt = Q(Yt) be an orbit of Extinction of dominated
strategies
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(CDA). If a i ∈ Ai is dominated (even iteratively), then it becomes extinct along Xt . More
explicitly, suppose that each player’s regularizer is of the form

h i(x i) = ∑
a i∈Ai

θ i(x i a i ) (3.18)

for some continuous, strictly convex function θ i ∶ [0, 1] → R that is smooth on (0, 1]. If
a i ≺ a′i , then

X i a i ,t ≤ ϕ i(c i − δ i t), (3.19)

where
δ i = min{u i a′i (x) − u i a i (x) ∶ x ∈ X} (3.20)

is the minimum payoff difference between a i and a′i , c i is a constant that only depends on
the dynamics’ initial conditions, and the rate function ϕ i is given by

ϕ i(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if z ≤ θ′i(0+),
1 if z ≥ θ′i(1−),
(θ′i)−1(z) otherwise,

(3.21)

where (θ′i)−1 is the inverse function of θ′i .

Corollary 3.5. Under the replicator dynamics (RD), dominated strategies become extinctElimination
in (RD) and (PD) at a geometric O(exp(−δt)) rate. By contrast, under the projection dynamics (PD),

dominated strategis become extinct in finite time.

Remark 3.2. The significance of this result is that it shows that no-regret learning dy-

namics (CDA) are not vulnerable to the counterexample of Viossat and Zapechelnyuk

[148]. Even though CCE(Γ)might contain correlated strategies that are supported only

on strictly dominated strategies, Theorem 3.4 shows that no-regret learning based on

(OMD) does avoid this part of CCE(Γ) – in continuous time at least.

Remark 3.3. For posterity, we should also mention here that “rates” in a continuous-time

setting are not necessarilymeaningful, because the time parameter can be reparametrized

arbitrarily. Nevertheless, Theorem 3.4 does admit a matching result in discrete time,

which we state in Chapter 4.

We now turn to the equilibrium convergence properties of (CDA). Heuristically, theseStability and convergence
can be summarized as follows:

1. Nash equilibria are stationary under (CDA).

2. If an interior solution orbit converges, its limit is a Nash equilibrium.

3. If a point is stable under (CDA), then it is a Nash equilibrium.

4. Strict Nash equilibria are stable and attracting under (CDA).

Of course, since (CDA) does not evolve directly onX (and the associated primal dynam-

ics may fail to be well-posed if a player’s regularizers is not steep), the standard notions

of dynamical stability and stationarity must be modified accordingly. In particular, these

notions continue to apply in the dual space V∗; however, since the mapping Q∶Y → X
is neither injective nor surjective, this approach would not suffice to define stationarity

and stability on X . We address this issue via the following definition:

Definition 3.2. Fix x∗ ∈ X and let Xt = Q(Yt) be an orbit of (CDA). We say that:

1. x∗ is stationary under (CDA) if Xt = x∗ for all t ≥ 0 whenever X0 = x∗.
2. x∗ is Lyapunov stable under (CDA) if, for every neighborhood U of x∗, there

exists a neighborhood U ′ of x∗ such that Xt ∈ U for all t ≥ 0 whenever X0 ∈ U ′.
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3. x∗ is attracting under (CDA) if it admits a neighborhood U such that Xt → x∗ as
t →∞ whenever X0 ∈ U .

4. x∗ is asymptotically stable under (CDA) if it is Lyapunov stable and attracting.

On the issue of stationarity, there are some subtle points that arise. First, note that Stationarity in the primal
vs. stationarity in the dualx∗ is implicitly required to belong to X ○ (since x∗ = X0 = Q(Y0)); however, no such

assumption is made for stable and/or attracting states. From a dynamical standpoint,

the reason for this distinction is that stationary points should be (constant) trajectories

of the dynamical system under study, whereas Lyapunov stable and attracting states only

need to be approachable by orbits. Clearly, since ri(X ) ⊆ X ○, any point in X can be a

candidate for (asymptotic) stability under (CDA). However, boundary points might not

be suitable candidates for stationarity, so stability does not imply stationarity (as would

be the case for a bona fide dynamical system defined on X ).
With this definition in hand, we have the following basic result:

Theorem 3.6 (Mertikopoulos and Sandholm, 2016). Fix x∗ ∈ X and let Xt = Q(Yt) be Equilibrium convergence
and stability propertiesan orbit of (CDA). Then:

1. If x∗ ∈ X is stationary under (CDA), it is a Nash equilibrium; conversely, if x∗ is a
Nash equilibrium and x∗ ∈ imQ, then x∗ is stationary under (CDA).

2. If Xt → x∗ as t →∞, then x∗ is a Nash equilibrium.

3. If x∗ ∈ X is Lyapunov stable under (CDA), then x∗ is a Nash equilibrium.

4. If x∗ is a strict Nash equilibrium, it is also asymptotically stable under (CDA).

To the best of the author’s knowledge, this is the strongest universal convergence

result that can be obtained for the no-regret dynamics (CDA) in finite games – i.e.,

without further assumptions on the structure of the game being played. For an in-depth

discussion, we refer the reader to Mertikopoulos and Sandholm [92, 93].

3.3.2 Positive results in concave games

With these first results in place for finite games, we turn to the long-run behavior of the

no-regret dynamics (CDA) in concave games (i.e., continuous games with individually

concave payoff functions). Since the notion of strategic dominance does not really apply

beyond finite games, we will focus on the dynamics’ equilibrium convergence properties.

To state our result, we will make the following general assumptions: Blanket assumptions

Assumption 3.1 (Concavity). The underlying game G ≡ G(N ,X , u) is concave.

Assumption 3.2 (Lipschitz smoothness). The individual payoff gradient field V ∶X → R
is Lipschitz continuous, i.e.,

∥V(x′) − V(x)∥∗ ≤ β∥x′ − x∥ (3.22)

for some β > 0 and all x , x′ ∈ X .

Assumption 3.3 (Fenchel reciprocity). For all x ∈ X and every sequence y i ∈ Y , k =
1, 2, . . . , the Fenchel coupling (3.16) satisfies the reciprocity condition

F(x , y i)→ 0 whenever Q(y i)→ x . (3.23)

Remark. The term “reciprocity” is due to [97] and expresses the following topological

equivalence: By the strong convexity assumption for h, it follows that

F(x , y) ≥ K
2
∥Q(y) − x∥2 for all x ∈ X , y ∈ Y . (3.24)
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As a result, if F(x , yk)→ 0 as k →∞, we will also have xk ≡ Q(yk)→ x. Assumption 3.3

posits the converse to this statement, hence the name “reciprocity”. Similar conditions

for the Bregman divergence have been considered by Alvarez et al. [4], Kiwiel [77] and

many others. It is easy to verify that the regularizers considered so far all satisfy this

condition.

With all this in hand, we have the following result:

Theorem 3.7 (Mertikopoulos and Zhou, 2019). Suppose that Assumptions 3.1–3.3 hold,Convergence
in concave games and let Xt = Q(Yt) be an orbit of (CDA). Then:

1. If Xt → x∗ ∈ X as t →∞, then x∗ is a Nash equilibrium of G.

2. If, in addition, G is strictly monotone, Xt converges to a Nash equilibrium.

In contrast to Theorem 3.14, the convergence guarantee of Theorem 3.7 is global, i.e.,

it is valid for any initial condition in (CDA). The price for this global convergence is the

monotonicity requirement for V ; this condition can actually be relaxed, but not without

positing some modicum of global structure. In the absence of a global monotonicity

requirement, it is still possible to derive local convergence results for (CDA) in the spirit

of Theorem 3.14; for a detailed analysis, we refer the reader to [97].

3.4 learning in the presence of noise

#This section summarizes results from [25, 90, 94–96]

Throughout the previous section, we implicitly assumed that (CDA) was run with

access to perfect gradient information. However, for the same reasons that perfect

oracle feedback is often hard to come by, this assumption is often violated in practical

applications of game-theoretic learning: for instance, in telecommunication networks

and traffic engineering, signal strength and latency measurements are constantly subject

to stochastic fluctuations which introduce noise to the input of any learning algorithm.

On that account, our aim in this section will be to examine the robustness of this analysis

in the presence of stochastic perturbations to these measurements.

In our continuous-time framework, the most straightforward way to account for suchDual averaging
in the presence of noise perturbations is by introducing a Wiener process in Eq. (CDA). In so doing, we obtain

the stochastic dual averaging dynamics

dYt = Vt dt + σ(Xt , t) dWt

X i = Q(ηtYt)
(SDA)

where the drift process Vt is defined as in the previous section,7Wt is a Wiener process

in a Euclidean space W ≅ Rm and the (possibly state-dependent) diffusion matrix

σ ∶X → Hom(V ,W) ≅ Rn×m measures the strength of the noise process (and is assumed

to be Lipschitz continuous throughout).

In addition to the Wiener processWt , an important difference between (SDA) andThe role of ηt
(CDA) is the variable “learning rate” ηt > 0. The role of this parameter is discussed in

detail below and, throughout the sequel, we make the following standing assumption

ηt is nonincreasing, C1
-smooth in t, and lim

t→∞
ηt =∞. (3.25)

Heuristically, the role of the learning parameter ηt in (SDA) is to temper the growth

of the gradient aggregation variable Yt so as to allow a better exploration of the problem’s

state space. In that regard, ηt should be contrasted to the vanishing step-size rules that are

7 That is, Vt = −∇ℓt(Xt) in the unilateral setting and Vt = V(Xt) in the multi-agent setting.
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used in the theory of stochastic approximation – see e.g., Benaïm [14], Borkar [22], Ljung

[86], Robbins and Monro [120], and references therein. The difference between the two

is that, in stochastic approximation, a variable step-size means that new information

enters the algorithmwith a decreasing weight; by contrast, in our context, all information

would be weighed evenly, but the aggregate signal would be decreased by ηt in order to

avoid extreme reponses to a given stimulus. This “post-moderation” of gradient signals

is not needed in the deterministic setting of (CDA) but, as we shall see below, it plays a

crucial role in the case of (SDA).

Example 3.3. Going back to the entropic regularization framework of Example 2.10, Stochastic replicator
dynamics(SDA) gives the stochastic exponential learning dynamics

dYi a i = u i a i (X) dt + σi a i dWi a i

X i a i =
exp(Yi a i )

∑a′i∈Ai
exp(Yi a′i )

(SXL)

where, for simplicity, we assume thatW is a standardWiener process in Y , σ is diagonal,

and we have suppressed the time index t. A straightforward application of Itô’s lemma

(see [25] for the details) then leads to the stochastic replicator dynamics

dX i a i = ηX i a i

⎡⎢⎢⎢⎢⎣
u i a i (X) − ∑

a′i∈Ai

X i a′i u i a′i (X)
⎤⎥⎥⎥⎥⎦
dt

+ ηX i a i

⎡⎢⎢⎢⎢⎣
σi a i dWi a i − ∑

a′i∈Ai

σi a′iX i a′i dWi a′i

⎤⎥⎥⎥⎥⎦

+ η̇
η
X i a i

⎡⎢⎢⎢⎢⎣
logX i a i − ∑

a′i∈Ai

X i a′i logX i a′i

⎤⎥⎥⎥⎥⎦
dt

+ η2

2
X i a i

⎡⎢⎢⎢⎢⎣
σ 2
i a i
(1 − 2X i a i ) − ∑

a′i∈Ai

σ 2
i a′i
X i a′i (1 − 2X i a′i )

⎤⎥⎥⎥⎥⎦
dt.

(SRD)

For constant η, (SRD) is simply the stochastic replicator dynamics of exponential Replicator dynamics with
aggregate shockslearning first introduced in [90]. As such, (SRD) should be contrasted to the evolutionary

replicator dynamics with aggregate shocks of [53]:

dX i a i = X i a i

⎡⎢⎢⎢⎢⎣
u i a i (X) − ∑

a′i∈Ai

X i a′iu i a′i (X)
⎤⎥⎥⎥⎥⎦
dt

+ X i a i

⎡⎢⎢⎢⎢⎣
σi a idWi a i − ∑

a′i∈Ai

σi a′iX i a′i dWi a′i

⎤⎥⎥⎥⎥⎦

− X i a i

⎡⎢⎢⎢⎢⎣
σ 2
i a i
X i a i − ∑

a′i∈Ai

σ 2
i a′i
X2

i a′i

⎤⎥⎥⎥⎥⎦
dt,

(ASRD)

where X i a i denotes the population share of the a i-th genotype of species k in a multi-

species environment, u i a i represents its reproductive fitness, and the noise coefficients

σi a i measure the impact of randomweather-like effects on population evolution.8 Besides

the absence of the learning rate η, the fundamental difference between (SRD) and

(ASRD) is the Itô correction in the last line of (SRD)/(ASRD). This difference is due to

the different propagation of stochastic perturbations under (SDA) and it leads to drastic

differences in the long-run behavior of (SRD) and (ASRD). For a detailed discussion of

8 For a comprehensive account of the literature surrounding (ASRD), see Hofbauer and Imhof [64], Mertikopou-

los and Viossat [96], and references therein.



44 learning in games : a continuous-time skeleton

the differences between learning and evolution in this context, we refer the reader to

Mertikopoulos and Viossat [96].

3.4.1 Single-agent considerations

With these preliminaries in hand proceed to establish the basic regret guarantees of

(SDA) in a unilateral setting:

Theorem 3.8 (Mertikopoulos and Staudigl, 2018). Suppose that (SDA) is run against aRegret incurred
by (SDA) locally integrable stream of convex loss functions ℓt ∶X → R with a variable parameter ηt

satisfying (3.25). Then, with probability 1, the incurred regret is bounded as

Reg(T) ≤ H
ηT
+ σ 2

∗
2K ∫

T

0
ηt dt +O(

√
T log logT) (3.26)

where σ 2
∗ = maxx∥σ(x)∥2F and H = max h −min h denotes the depth of h over X . In

particular, if (SDA) is run with a learning rate of the form ηt ∝ t−p for some p ∈ (0, 1),
we have

Reg(T) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

O(T 1−p) if 0 < p < 1/2,
O(
√
T log logT) if p = 1/2,

O(T p) if 1/2 < p < 1.
(3.27)

Remark. We should note here that Theorem 3.8 has been stated for a typical realization

of Wt . The O(
√
T log logT) term is actually a martingale term which vanishes in

expectation, so the dynamics’ also enjoy the bound

Reg(T) ≤ H
ηT
+ σ 2

∗
2K ∫

T

0
ηt dt (3.28)

which allows us to get rid of the iterated logarithm factor
√
log logT .

Compared to the deterministicO(1) bound ofTheorem 3.2, the bound (3.26) indicatesThe gap between
(CDA) and (SDA) a decrease in performance by a factor of Θ̃(

√
T). The reason for this is the Itô correction

term σ 2
∗/(2K) ∫

T
0
ηt dt in (3.26): balancing this second-order error against the noise-

free term H/ηT imposes a Θ(1/
√
t) schedule for ηt (otherwise, one term would be

asymptotically slower than the other. In this regard, (3.26) is reminiscent of theO(1/
√
T)

bounds for (DA) derived in Chapter 2. In particular, as discussed earlier in this section,

the increase in regret fromO(1) toO(
√
T) in discrete time stems from the discretization

of the continuous-time dynamics which introduces a second-order Taylor term which

makes constant regret unattainable. In the case of (SDA), there is no discretization gap,

but the second-order correction in Itô’s lemma ends up playing a similar role.

We close this section with an examination of the properties of (SDA) in the staticErgodic convergence
in static problems optimization framework of Example 2.1, i.e., when the optimizer is facing the same loss

function ℓt = f for all t ≥ 0. In this case, we are of course more interested about the

convergence of (SDA) to an optimizer of f ; the following corollary is an immediate

consequence of Theorem 3.8:

Corollary 3.9 (Mertikopoulos and Staudigl, 2018). Suppose that (SDA) is run against the
static optimization problem (Opt) with variable learning rate ηt =

√
HKσ 2

∗min{1,
√
t}.

Then, the time-averaged process X̄t = (1/t) ∫ t
0
Xs ds enjoys the bound

E[ f (X̄t)] ≤ min f + 2
√

Hσ 2
∗

Kt
. (3.29)

Because of the inherent stochasticity in (SDA), obtaining almost sure convergence

results for the actual trajectories Xt is, in general, not possible (we examine this issue in
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more detail towards the end of this section). As such, our goal in what follows will be to

analyze the long-run concentration properties of (SDA) and to determine the domain

that Xt occupies with high probability in the long run. For reasons that will become

clear shortly, we focus on strongly convex problems with an interior solution x∗ ∈ ri(X )
and we will assume for simplicity that σ ≡ σ∗I for some constant σ∗ > 0.9 Our first result

in this context is as follows:

Proposition 3.10 (Mertikopoulos and Sandholm, 2018). Let f be an α-strongly convex Hitting time
statisticsfunction with an interior minimizer x∗ ∈ ri(X ). If Xt = Q(ηYt) is an orbit of (SDA)

initialized at Y0 = 0, we have

E[ 1
t ∫

t

0
∥Xs − x∗∥2 ds] ≤

2H
ηαt
+ ησ 2

∗
αK

. (3.30)

Moreover, if (SDA) is run with η = αKδ2/(2σ 2
∗) and τδ = inf{t > 0 ∶ ∥Xt − x∗∥ ≤ δ}

denotes the first time at which Xt gets within δ > 0 of x∗, we have the hitting time estimate

E[τδ] ≤
8Hσ 2

α2Kδ4
. (3.31)

Remark 3.4. For a value-based analogue of (3.30) when h is steep, see Raginsky and

Bouvrie [118, Prop. 4].

Proposition 3.10 provides a basic estimate of the long-run concentration of Xt around

x∗, and also highlights the role of α and σ . Specifically, (3.31) shows that Xt hits a δ-
neighborhood of x∗ in timewhich is on averageO(1/δ4). What’smore, themultiplicative

constant in this bound increases with the noise level in (SDA) and decreases with the

sharpness of the minimum point x∗ (as quantified by the strong convexity constant α of

f ). To obtain finer information regarding the concentration of Xt around x∗, we need
to consider its occupation measure:

Definition 3.3. The occupation measure of Xt at time t ≥ 0 is given by The occupation
measure of Xt

µt(A) =
1

t ∫
t

0
1(Xs ∈ A) ds for every Borel A ⊆ X . (3.32)

In words, µt(A) is the fraction of time that X spends in A up to time t. As such,
the asymptotic concentration of X around x∗ can be estimated by the quantity µt(Bδ),
where

Bδ ≡ Bδ(x∗) = {x ∈ X ∶ ∥x − x∗∥ ≤ δ} (3.33)

is the intersection of a δ-ball centered at x∗ with X . We then have the following concen-

tration result (for a numerical illustration, see Fig. 3.3):

Theorem 3.11 (Mertikopoulos and Staudigl, 2018). Suppose that (SDA) is run against Long-run concentration
around interior solutionsan α-strongly convex function admitting an interior minimizer x∗ ∈ ri(X ). Moreover, fix

some δ > 0 and suppose that the infinitesimal covariance matrix Σ = σσ⊺ of (SDA) is
time-homogeneous and uniformly positive-definite. Then, with probability 1, we have:

µt(Bδ) ≳ 1 −
ησ 2

αKδ2
for sufficiently large t. (3.34)

provided that η < αKδ2/σ 2.

Corollary 3.12. Fix some tolerance ε > 0. If (SDA) is run with assumptions as above and
η ≤ εαKδ2/σ 2, we have µt(Bδ) ≥ 1 − ε for all sufficiently large t (a.s.).

9 In fact, it suffices to assume that supx ,t∥σ(x , t)σ(x , t)
⊺∥ ≤ σ 2∗; to streamline our discussion, we focus on the

simplest case.
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Figure 3.3: Numerical illustration of Theorem 3.11 regarding the long-run occupation measure of

Xt under (SDA). The dashed contours represent the level sets of f over X = [0, 1]2,
and the flowlines indicate the flow of (CDA). The shades of gray correspond to higher

probabilities of observing Xt in a given region (darker indicates higher probability).

In a nutshell, Theorem 3.11 states that the concentration of Xt around x∗ may beConcentration and
invariant measures arbitrarily sharp if η is taken small enough. Indeed, for η < αKδ2/σ 2, Proposition 3.10

shows that Bδ is recurrent, i.e. P(Xt ∈ Bδ for some t ≥ 0) = 1. In fact, it can be shown

that the stated assumptions guarantee the existence of a unique invariant distribution ν
for the dual process Yt . The pushforward of ν toX is precisely the limit of the occupation

measures µt of Xt as t →∞, so (3.34) follows by using the mean square bound (3.30) to

estimate ν.
It is also worth noting that the bound (3.34) only depends on the mirror map Q via

its inverse Lipschitz constant K (that is, the strong convexity constant of h). Eq. (3.34)
suggests that K should be taken as large as possible so as to have µt(Bδ) ≈ 1. However,
in so doing, the process Xt may initially spend a larger amount of time near the prox-

center xc ≡ argmin h of X . This is an important trade-off between the sharpness of the

asymptotic concentration of Xt near x∗ and the time it takes to attain this asymptotic

regime.

3.4.2 Multi-agent considerations

We now turn to the study of (SDA) in a game-theoretic context. As in Section 3.3, we

first present our analysis for finite games and then discuss continuous games towards

the end of this section.

results for finite games . We begin by examining the extinction of dominatedExtinction of
dominated strategies strategies under (SDA). Despite the strong elimination properties of the deterministic

dynamics (CDA), the extinction of dominated strategies can be a fairly subtle issue

in the presence of noise and uncertainty. In the replicator dynamics with aggregate

shocks (ASRD), Cabrales [33], Imhof [71] and Hofbauer and Imhof [64] provided a set

of sufficient conditions on the intensity of the noise that guarantee the elimination of

dominated strategies; however, if these conditions are not met, dominated strategies

may – and, in fact, do – survive in the long run [96].

On the other hand, Mertikopoulos and Moustakas [90] showed that the noisy repli-

cator dynamics (SRD) induced by (SDA) eliminate all strategies that are not iteratively

undominated, irrespective of the noise level. As we show below, this unconditional

elimination result extends to the entire class of no-regret dynamics covered by (SDA):
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Theorem 3.13 (Bravo and Mertikopoulos, 2017). Let Xt = Q(Yt) be a solution orbit
of (SDA). If a i ∈ Ai is dominated (even iteratively), it becomes extinct along Xt with
probability 1.

Remark 3.5. Theorem 3.13 shows that (SDA) eliminated dominated strategies but it does

not give any information on the rate of extinction – or how probable it is to observe a

dominated strategy above a given level at some t ≥ 0. This level of detail lies beyond the

scope of this manuscript; for a detailed discussion and a precise result on these issues,

we refer the interested reader to Bravo and Mertikopoulos [25];

Now, since (SDA) boils down to the stochastic replicator dynamics (SRD) in the Learning vs. evolution
under uncertaintyentropic case, Theorem 3.13 should be contrasted to the corresponding results of Cabrales

[33] and Imhof [71] for (ASRD). Importantly, even though (SRD) and (ASRD) coincide

in the noise-free case σ = 0, the Itô correction to the drift is different in the two cases:

in the former, it stems from the positive reinforcement of strategies that perform well

under (SXL); in the latter, it stems from the assumption that the per capita growth

of the a i-th strategy is driven by the perturbed payoff process u i a i + σ dWi a i . These

mechanisms are equivalent in the noise-free case, but not in the presence of uncertainty:

the reinforcement model outlined above can detect differences between the payoff of

two strategies that the biological model cannot (because there is no inherent scaling in

the payoff aggregation variable Yt) [96]. By this token, learning and evolution end up

leading to fairly different outcomes under uncertainty.

A similar phenomenon arises when considering the long-term stability and equilib- Stochastic stability
rium convergence properties of (SDA). To set the stage, we first define the notions of

Lyapunov and asymptotic stability in a stochastic differential equation (SDE) context.

Following Khasminskii [76], we have:

Definition 3.4. Fix x∗ ∈ X and let Xt = Q(Yt) denote a solution orbit of (SDA). We

will then say that:

1. x∗ is stochastically (Lyapunov) stable under (SDA) if, for all ε > 0 and every

neighborhood U of x∗ in X , there exists a neighborhood U ′ ⊆ U of x∗ such that

P(Xt ∈ U for all t ≥ 0 ∣ X0 ∈ U ′) ≥ 1 − ε. (3.35)

2. x∗ is stochastically asymptotically stable under (SDA) if it is stochastically stable
and attracting; that is, for all ε > 0 and every neighborhood U of x∗ in X , there
exists a neighborhood U ′ ⊆ U of x∗ such that

P(Xt ∈ U for all t ≥ 0 and limt→∞ Xt = x∗ ∣ X0 ∈ U ′) ≥ 1 − ε. (3.36)

In the evolutionary setting of (ASRD), Imhof [71] and Hofbauer and Imhof [64]

showed that strict Nash equilibria are stochastically asymptotically stable provided that

the variability of the shocks is small enough. Remarkably, this “small noise” assumption

is not needed under (SDA):

Theorem 3.14 (Bravo and Mertikopoulos, 2017). Fix x∗ ∈ X and let Xt = Q(Yt) be a Equilibrium convergence
and stability propertiessolution orbit of (SDA). Then:

(1) If P (limt→∞ Xt = x∗) > 0, x∗ is a Nash equilibrium.

(2) If x∗ is stochastically (Lyapunov) stable, it is also Nash.

(3) If x∗ is a strict Nash equilibrium, it is also stochastically asymptotically stable.

On the flip side of this theorem, if a Nash equilibrium x∗ ∈ X is pure but not strict, The importance
of being strictthen it cannot be attracting under (SDA) Heuristically, the reason for this is as follows:
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(a) A sample trajectory and its time-average.
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(b) Density of time averages at time T .

Figure 3.4: The long-run behavior of time-averaged trajectories of play under (SXL) in Matching

Pennies. Fig. 3.4a shows the evolution of a sample trajectory and its time average; in

Fig. 3.4b, we show a density plot of the distribution of 10
4
time-averaged trajectories

for different values of the integration horizon T . As predicted by Proposition 3.16,

time-averages converge to the game’s Nash equilibrium.

if some player i ∈ N has two strategies a i , a′i ∈ Ai that give the same payoff against

x∗−i , the score difference Yi a i − Yi a′i between the two will be dominated by the noise

(since the drift vanishes). In this case, it is reasonable to expect that the dynamics (SDA)

are attracted (locally and with high probability) to the face of X that is spanned by x∗

and all best responses to x∗. However, a rigorous statement along these lines is fairly

cumbersome to write down, so we do not provide one.

As an alternative to the study of interior Nash equilibria, we analyze below the asymp-On the behavior
of time-averages totic behavior of the time-averaged process X̄t of Xt in 2-player zero-sum games. Our

analysis is motivated by the original deterministic results of Hofbauer and Sigmund

[67] and Hofbauer et al. [69] who showed that X̄t converges to Nash equilibrium under

the (deterministic) replicator dynamics (RD), provided that lim inf t→∞ X i a i ,t > 0 for
all a i ∈ Ai , i = 1, 2. Our main contribution here is that the averaging principle of

Hofbauer and Sigmund [67] extends to the stochastic dynamics (SDA), irrespective of

the magnitude of the noise:

Proposition 3.15. Let Γ be a finite 2-player zero-sum game and let Xt be a solution orbitAveraging under
permanency of the stochastic dynamics (SDA). If the players’ score differences Yi a i (t) − Yi a′i (t) grow

sublinearly for all a i , a′i ∈ Ai , a = 1, 2, then the time-averaged process X̄t converges almost
surely to the Nash set of Γ.

In the case of (XL)/(RD), the sublinear growth requirement for Yi a i −Yi a′i boils down

to the permanency condition lim inf t→∞ X i a i (t) > 0, so we recover the original result
of Hofbauer and Sigmund [67]. However, the applicability of Proposition 3.15 is limited

by the growth requirement for Yi a i − Yi a′i . The following proposition shows that this

condition always holds in 2-player zero-sum games with an interior equilibrium:

Proposition 3.16 (Bravo and Mertikopoulos, 2017). Let Γ be a 2-player zero-sum game
with an interior Nash equilibrium, and assume that (SDA) is run with a vanishing learning
rate ηt satisfying Eq. (3.25). Then, with probability 1, the time-average X̄t of Xt converges
to the set of Nash equilibria of Γ.

In a certain sense, Proposition 3.16 is reminiscent of Theorem 3.8 on the no-regretThe best response
dynamics properties of (SDA). This link between time-averaged orbits and the induced regret was

the starting observation of Hofbauer et al. [69] who used it to derive a general averaging
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principle linking the time-averaged behavior of (CDA) to the best response dynamics

of Gilboa and Matsui [55], viz.

Ẋ i ∈ bri(X) − X i , (BRD)

where

bri(x) ≡ argmax
x′i ∈Xi

u i(x′i ; x−i) (3.37)

denotes the best response (BR) correspondence of player i.
More precisely, Hofbauer et al. [69] showed that the ω-limit set Ω of the time-averages

of (RD) is an internally chain transitive (ICT) set of (BRD), i.e., any two points in Ω

can be joined by a piecewise continuous “chain” of arbitrarily long orbit segments of

(BRD) lying in Ω up to arbitrarily small jump discontinuities.10 As we show below, the

stochastic dynamics (SDA) share the same connection to the deterministic best response
dynamics (BRD), irrespective of the noise level:

Theorem 3.17. Let Xt be a solution orbit of (SDA) for a finite 2-player game Γ. Then, the The link between
(SDA) and (BRD)ω-limit set of X̄t is internally chain transitive under (BRD).

Owing to Theorem 3.17, several conclusions of Hofbauer et al. [69] for 2-player games

can be extended to the stochastic no-regret setting of (SDA) simply by exploiting the

properties of the deterministic dynamics (BRD). Specifically, we obtain the following

immediate corollaries of Theorem 3.17:

1. If X̄t converges under (SDA), its limit is a Nash equilibrium.

2. Any global attractor of (BRD) also attracts the time-averaged orbits of (SDA),

independently of the noise level. In particular, since the Nash set of a 2-player

zero-sum game is globally attracting under (BRD), this observation extends Propo-

sition 3.16 to the constant η case.

3. The only ICT sets of (BRD) in potential games consist of (isolated) components

of Nash equilibria; hence, X̄t converges to a component of NE(Γ).

results for concave games . We now turn to games with continuous action

spaces – and, in particular, monotone games. A first observation in this context is that Non-convergence with
probability 1the trajectory of play induced by (SDA) may fail to converge with probability 1, even in

very simple games. For a concrete example, consider a single player with action space

X = [−1, 1] and payoff function u(x) = 1 − x2/2. Then, V(x) = ∇u(x) = −x for all

x ∈ [−1, 1], so (SDA) takes the form

dY = −Xt dt + σ dWt ,

Xt = [Yt]1−1 ,
(3.38)

where, for simplicity, we took σ to be constant, η = 1, and we used the shorthand [x]ba for
x if x ∈ [a, b], a if x ≤ a, and b if x ≥ b. In this case, the game’s unique Nash equilibrium

obviously corresponds to x = 0 = [0]10. However, the dynamics (3.38) describe a

truncated Orstein–Uhlenbeck (OU) process [74], leading to the explicit solution

Yt = C0e−t + σ ∫
t

t0
e−(t−s) dWs for some C0 ∈ R, (3.39)

valid whenever Ys ∈ [−1, 1] for s ∈ [t0 , t].

10 In particular, ICT sets are invariant, connected and have no proper attractors; for a full development, see

Benaïm [14], Benaïm et al. [16], and refferences therein.
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Thanks to this expression, several conclusions can be drawn regarding (3.38). First,

even though the drift of the dynamics (3.38) vanishes at 0, the martingale part dWt
does not, so the process Xt cannot converge to 0 with positive probability, even when σ is

arbitrarily small. Instead, Xt converges in distribution to a truncated Gaussian random

variable X∞ with mean 0 and variance proportional to σ 2 [74, Chap. 5.6]. Thus, in the

long run, Xt will fluctuate around 0 with a spread that grows with the noise volatility

coefficient σ . Furthermore, by ergodicity, the same is true for the time-averaged process

X̄t = (1/t) ∫ t
0
Xs ds, i.e., the long-run average of Xt also fails to converge to equilibrium

with positive probability.

To circumvent this negative result, we begin with the case where the players’ gradient

feedback becomes more accurate as measurements accrue over time – for instance,

thanks to a variance reduction scheme or as in applications to wireless communications

where the accumulation of pilot signals allows users to better sense their channel over

time [100]. Our main result in this context is as follows:

Theorem 3.18 (Mertikopoulos and Staudigl, 2017). Let G ≡ G(N ,X , u) be a strictlyConvergence under
vanishing noise monotone game, let Xt = Q(Yt) be an orbit of (SDA), and suppose that Assumptions 3.2

and 3.3 hold. If maxx∈X ∥σ(x , t)∥ = o(1/
√
log t) as t → ∞, Xt converges to the game’s

(necessarily unique) Nash equilibrium with probability 1.

Heuristically, Theorem 3.18 provides an upper bound for the rate at which the noise

must vanish so that convergence may arise in the long run; in particular, any power law

decay rate is sufficient in that regard. Beyond this “vanishing noise”, convergence under

persistent noise does not seem possible. 11

On the other hand, if we focus on the time-averages of (SDA), we have the following

result:

Theorem 3.19 (Mertikopoulos and Staudigl, 2017). Let G ≡ G(N ,X , u) be a monotoneCesàro convergence
in monotone games game satisfying Assumption 3.2, and let Xt = Q(Yt) be an orbit of (SDA). Then, with

probability 1, the time-average X̄t of Xt enjoys the equilibrium convergence guarantee

NI(X̄t) ≤
H
ηt t
+ σ 2

∗
2Kt ∫

t

0
ηs ds +O(t−1/2 log log t), (3.40)

where

NI(x) = ∑
i∈N
[max
x′i ∈Xi

u i(x′i ; x−i) − u i(x)] (3.41)

denotes the game’s Nikaido–Isoda (NI) function. In particular, if ηt → 0 as t → ∞, the
time-averaged trajectories of (SDA) converge to NE(G) with probability 1.

Remark. The Nikaido–Isoda function was introduced in [112] and has the key property

that

NI(x) ≥ 0 for all x ∈ X (3.42)

with equality if and only if x ∈ NE(G). In this way, NI(x) is a natural figure of merit for

testing the convergence of a given sequence to a Nash equilibrium (or, more precisely,

the set thereof).

The bound (3.41) is formally similar to the value convergence guarantee (3.29) for

(static) convex minimization problems, so the same remarks apply. In particular, con-

vergence requires a vanishing ηt but, at the same time, (3.25) requires that ηt does not

decay too fast (so that limt→∞ ηt t = 0). As in the case of Theorem 3.8, the optimal

Cesàro convergence rate for the Nikaido–Isoda function is with a schedule of the form

ηt ∝ 1/
√
t.

11 Except perhaps if a Nash equilibrium x∗ is located at a corner of X – specifically, if V(x∗) belongs to the
topological interior of the polar cone PC(x∗) toX at x∗. We examine this “sharpness” condition in Chapter 4.
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LEARNING IN GAMES: ALGORITHMIC ANALYSIS

T
he continuous-time analysis of the previous chapter provides a basic chassis for un-

derstanding the properties of no-regret learning in games. At the same time however,

it also highlights some inherent differences between continuous and discrete time –

for instance, the gap between the O(
√
T) minimax regret bound in discrete time vs.

theO(1) regret achieved by online mirror descent in continuous time. In this chapter,

we use these insights as a rough roadmap of what to expect in a bona fide algorithmic

setting.

For concreteness, we will focus throughout on moderate-to-low feedback environ-

ments where a full function oracle is not available (or is otherwise impractical to access).

In view of this, our main point of interest will be no-regret procedures induced by the

lazy mirror descent / dual averaging algorithm:

Yt+1 = Yt + γtVt

Xt+1 = Q(Yt+1)
(DA)

where the sequence of gradient signals Vt , t = 1, 2, . . . , is generated by a stochastic

first-order oracle as follows:

1. In the unilateral setting
Vt = −[∇ℓt(Xt) + Zt] (4.1)

where ℓt ∶X → R is the sequence of loss functions encountered by the agent.

2. In themulti-agent setting
Vt = V(Xt) + Zt (4.2)

where V(x) = (Vi(x))i∈N denotes the players’ individual payoff gradient profile

in a continuous game G ≡ G(N ,X , u).

In both cases, we will assume that Vt satisfies the blanket SFO requirements (2.24), with

the obvious substitution ∇t ← −Vt for (2.24c). Towards the end of this chapter, we will

also discuss the case of zeroth-order feedback (i.e., when each agent only has access to

their individual payoff/loss) and other learning impediments.

4.1 no-regret vs . convergence : a discrete-time redux

#This section summarizes results from [80, 101, 102]

4.1.1 Regret minimization

We first discuss a way of bounding the regret of (DA) based on the continuous-time A continuous-time
approach to regret
minimization

guarantee (3.1) established in the previous chapter. For simplicity, we will consider

online linear optimization problems with perfect oracle feedback, but the general case is

not different.
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To carry out this analysis, let vt ∈ V∗, t = 1, 2, . . . , be a sequence of payoff vectors as

in Section 2.1, and let

V c
t = v⌈t⌉ for all t ≥ 0 (4.3)

denote the piecewise constant interpolation of vt to continuous time. Then, to compare

the continuous- and discrete-time regimes, we will write X c
t for the continuous-time

policy induced by (CDA) against V c
t , and Xd

t for the sequence of actions generated by

(DA) with (perfect) oracle feedback V d
t = vt . Dually to the above, we also let

Y c
t = ∫

t

0
V c
s ds (4.4a)

and

Y d
t =

t

∑
s=1

V d
t (4.4b)

denote the corresponding gradient aggregation variables of (CDA) and (DA) respec-

tively.

Now, assuming ∥vt∥∗ ≤ L for all t = 1, 2, . . . (cf. Assumption 2.2), the inducedThe discretization error
difference in payoffs can be expressed for all τ ∈ (0, 1) and all t = 1, 2, . . . as

∣⟨V c
t−τ , X

c
t−τ⟩ − ⟨vdt , Xd

t ⟩∣ = ∣⟨vt , X c
t−τ − Xd

t ⟩∣ ≤ L∥X c
t−τ − Xd

t ∥ (4.5)

Moreoever, since h is K-strongly convex (so the mirror map Q is (1/K)-Lipschitz con-
tinuous), Eqs. (4.4a) and (4.4b) provide the discretization error bound

∥X c
t−τ − Xd

t ∥ ≤
1

K
∥Y c

t−τ − Y d
t ∥∗ ≤

1

K ∫
t

t−τ
∥Vs∥∗ ds ≤

Lτ
K

. (4.6)

Hence, combining all of the above, the difference in the incurred regret can be expressed

as

∣Regc(T) − Regd(T)∣ = ∣ ∫
T

0
⟨V c

t , X
c
t ⟩ dt −

T

∑
t=1
⟨vt , Xd

t ⟩∣

≤
T

∑
t=1
∫

t

t−1
∣⟨V c

t−τ , X
c
t−τ − Xd

t ⟩∣ dτ

≤
T

∑
t=1

L ∫
t

t−1

Lτ
K

dτ = L2T
2K

. (4.7)

Finally, recalling the bound Regc(T) ≤ H of Theorem 3.2 and rescaling Vt ← γVt to takeContinuous to discrete
into account the step-size of (DA), we obtain the discrete-time guarantee

Reg(T) ≡ Regd(T) ≤ H
γ
+ γL2T

2K
. (4.8)

This approach dates back to Sorin [139] who used it to derive the no-regret proper-

ties of the exponential weights algorithm in continuous and discrete time. Kwon and

Mertikopoulos [80] subsequently extended the discretization analysis of Sorin [139] to

online convex optimization problems and obtained the general bound (4.8) for (DA).

Remarkably, this bound coincides with the bound (2.51) of Theorem 2.4 and can be

easily extended to cover the more general oracle assumptions therein.

A key observation from the above is that the second term in (4.8) can be interpreted

as the aggregation of T discretization errors, each of sizeO(γL2/K). Accordingly, we
observe the following trade-off between continuous and discrete time: a larger step-size

leads to “faster” regret minimization in continuous time, as measured by the H/γ term
above; however, it also leads to a commensurately larger discretization error, as measured
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by the term γL2T/(2/K). Obtaining optimal rates in discrete time requires balancing

these two terms, but the impact of discretization cannot be eliminated.

4.1.2 Limit cycles and persistence of off-equilibrium behavior

The discretization analysis of the previous section suggests that the discrete-time equi-

librium convergence properties of (DA) cannot be better than their continuous-time

counterparts. Thus, in view of the recurrence properties of the continuous-time dynam-

ics (CDA), it stands to reason that the discrete-time algorithm (DA) would also fail to

converge to Nash equilibrium in zero-sum games. We examine this question below in

the context of continuous saddle-point problems of the form

min
x1∈X1

max
x2∈X2

Φ(x1 , x2), (SP)

where each player’s action space Xi , i = 1, 2, is a closed convex subset of a finite-

dimensional normed space Vi ≡ Rn i , and Φ∶X ≡ X1 ×X2 → R denotes the problem’s

value function. Clearly, the finite game framework of Section 3.2 is recovered when

Xi = ∆(Ai) for a finite set of pure strategiesAi , i = 1, 2, and Φ is bilinear over X1 ×X2.

Most of the literature on saddle-point problems has focused on themonotone case,
i.e., when Φ is convex-concave. As we discussed in Section 2.3.2, Nash equilibria can

then be characterized as solutions to the variational inequality

⟨V(x∗), x − x∗⟩ ≤ 0 for all x ∈ X , (VI)

where

V(x) = (−∇x1Φ(x),∇x2Φ(x)) (4.9)

denotes the individual payoff gradient field of Φ. When Φ is convex-concave, this is in Minty variational
characterizationturn equivalent to solving theMinty variational inequality

⟨V(x), x − x∗⟩ ≤ 0 for all x ∈ X . (MVI)

Importantly, this equivalence extends beyond the realm of (pseudo-)convex-concave

problems. For a concrete non-monotone example, consider the problem

min
x1∈[−1,1]

max
x2∈[−1,1]

(x41 x22 + x21 + 1)(x21 x42 − x22 + 1). (4.10)

A straightforward calculation shows that only saddle-point of Φ is x∗ = (0, 0): it is easy
to check that x∗ is also the unique solution of the corresponding problem (MVI), despite

the fact that Φ is not even (quasi-)monotone.1 This shows that the equivalence between

(SP) and (MVI) encompasses cases that are incompatible with convexity/monotonicity

assumptions, even in the lowest possible dimension; for an in-depth discussion of the

links between (SP) and (MVI), we refer the reader to [50].

Motivated by this equivalence, we introduce below the notion of coherence:

Definition 4.1. We say that (SP) is coherent if every saddle-point of Φ is a solution of Coherence
(MVI) and vice versa. If (MVI) holds as a strict inequality when x is not a saddle-point

of Φ, (SP) will be called strictly coherent; by contrast, if (MVI) holds as an equality for

all x ∈ X , we will say that (SP) is null-coherent.

Remark 4.1. To the best of the author’s knowledge, the study of gradient conditions of
this type can be traced back at tleast to [23]; the term “coherence” is borrowed from

[102, 153]. We should also note that it is possible to relax the equivalence between (SP)

1 To see this, simply note that Φ(x1 , x2) ismulti-modal in x2 for certain values of x1 .
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Figure 4.1: Non-convergence of (DA) in the non-monotone saddle-point problem Φ(x1 , x2) =
(x1 − 1/2)(x2 − 1/2) + 1

3
exp(−(x1 − 1/4)2 − (x2 − 3/4)2).

and (MVI) by positing that only some of the solutions of (SP) can be harvested from

(MVI). For simplicity, we do not pursue this relaxation here.

Remark 4.2. As an example, if Φ is strongly convex-concave, (SP) is strictly coherent. By

contrast, 2-person finite zero-sum games with an interior equilibrium are null-coherent

[102]. In view of this connection, we will focus here on null-coherent games; strictly

coherent games will be studied in detail in the next section.

Now, going back to the analysis of Section 3.2, the key to establishing the recurrence

properties of the continuous-time dynamics (CDA) was the Fenchel coupling

F(x , y) = h(x) + h∗(y) − ⟨y, x⟩ for all x ∈ X , y ∈ Y . (4.11)

As we discussed in Section 3.2, if x∗ is an interior equilibrium of a finite zero-sum

game, F(x∗ , Xt) is a constant of motion under the dynamics (CDA). In the case of the

discrete-time system (DA), this fragile property is replaced by the following asymptotic

variant:

Theorem 4.1 (Mertikopoulos et al., 2019). Suppose that (SP) is null-coherent and (DA)Non-convergence in
zero-sum games is run with unbiased first-order oracle feedback of the form (2.31). Then, for every Nash

equilibrium x∗ of (SP), we have:

a) The sequence E[F(x∗ ,Yt)] is non-decreasing.

b) If, in addition, ∑t γ2t < ∞, the sequence F(x∗ ,Yt) converges (a.s.) to a random
variable F∞ with E[F∞] <∞.

Corollary 4.2. Suppose that Φ is bilinear and admits an interior equilibrium x∗ ∈ ri(X ).
If X1 ≠ x∗ and (DA) is run with a perfect gradient oracle (i.e., B = 0 and σ = 0), we have
limt→∞ D(x∗ , Xt) > 0.

In words, the above shows that (DA) does not converge in finite zero-sum games with

a unique interior equilibrium: instead, the induced sequence of play cycles at positive

Bregman divergence from the game’s Nash equilibrium. Heuristically, the reason for this

behavior is that, for small γ → 0, the incremental step γV(Q(y)) of (DA) is essentially
tangent to the level set of F(x∗ , ⋅) that passes through y. For finite γ > 0, things are even
worse because this increment points noticeably away from y, i.e., towards higher level
sets of F. As a result, the “best-case scenario” for (DA) is to orbit x∗ (when γ → 0); in

practice, for finite γ, the algorithm takes small outward steps throughout its runtime,

eventually converging to some limit cycle farther away from x∗.
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This failure of (DA) is due to the fact that, witout a mitigating mechanism in place,

a “blind” first-order step could overshoot and lead to an outwards spiral, even with

a vanishing step-size. We will revisit this issue towards the end of this chapter; for a

numerical illustration, see Fig. 4.1.

4.2 convergence to equilibrium and rationalizability

#This section summarizes results from [40, 97, 102]

We now proceed to establish a series of equilibrium convergence and rationalizability

results for (DA). To connect our discussion with that of the previous section, we first

present a series of results for concave games and then examine finite games towards the

end of this section.

4.2.1 Positive results in concave games

variational stability. We begin by revisiting the notion of coherence and the

variational characterization (MVI) of Nash equilibria in monotone games. Specifically,

(MVI) states that the players’ individual payoff gradients point (weakly) “towards” the

Nash set of a monotone game G in the sense that V(x) forms an acute angle with x∗ − x
for all x∗ ∈ X ∗ ≡ NE(G). This observation motivates the following definition:

Definition 4.2. We say that x∗ ∈ X is variationally stable (or simply stable) if there exists Variational stability
a neighborhood U of x∗ in X such that

⟨V(x), x − x∗⟩ ≤ 0 for all x ∈ U ,

with equality if and only if x = x∗. In particular, if U can be taken to be all of X , we say
that x∗ is globally variationally stable (or globally stable for short).

Remark 4.3. The terminology “variational stability” alludes to the seminal notion of

evolutionary stability (ES) introduced by Maynard Smith and Price [88] for population

games (i.e., games with a continuum of players and a common, finite set of actionsA).
Specifically, if V(x) = (u1(x), . . . , uN(x)) denotes the payoff field of such a game (with

x ∈ ∆(A) denoting the state of the population and ua(x) denoting the reproductive
fitness of the a-th genotype at state x), Definition 4.3 boils down to the variational

characterization of evolutionarily stable states by Taylor [142] and Hofbauer et al. [68].

As we show in the sequel, variational stability plays the same role for learning in games

with continuous action spaces as evolutionary stability plays for evolution in games with

a continuum of players.

By definition, if a continuous game G ≡ G(N ,X , u) is strictly monotone, its (unique) Variational stability
vs. monotonicityNash equilibrium is globally stable; the converese however does not hold, even partially.

As an example, consider the single-player game with payoffs given by the function

u(x) = 1 −
n

∑
ℓ=1

√
1 + xℓ , x ∈ [0, 1]n . (4.12)

In this simple example, the origin is the unique maximizer of u (and hence the game’s

uniqueNash equilibrium). Moreover, we trivially have ⟨V(x), x⟩ = −2∑n
ℓ=1 xℓ/

√
1 + xℓ ≤

0 with equality if and only if x = 0, so the origin satisfies the global version of (VS);

however, u is not even pseudo-concave if n ≥ 2, so the game cannot be monotone.

In words, strict monotonicity is a sufficient condition for the existence of a (globally)

stable state, but not a necessary one. That being said, even in this (non-monotone)

example, variational stability characterizes the game’s unique Nash equilibrium. We

make this link precise below:
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Proposition 4.3 (Mertikopoulos and Zhou, 2019). Suppose that x∗ ∈ X is variationally
stable. Then:

a) If G is concave, x∗ is an isolated Nash equilibrium of G.
b) If x∗ is globally stable, it is the game’s unique Nash equilibrium.

Proposition 4.3 indicates that variationally stable states are isolated. However, this alsoSetwise notions of
variational stability means that Nash equilibria of games with a concave – but not strictly concave – potential

may fail to be stable.2 To account for such cases, we will also consider the following

setwise stability notion:

Definition 4.3. Let C ⊆ X be closed and nonempty. We say that C is variationally stable
(or simply stable) if there exists a neighborhood U of C in X such that

⟨V(x), x − x∗⟩ ≤ 0 for all x∗ ∈ C and all x ∈ U , (VS)

with equality for a given x∗ ∈ C if and only if x ∈ C. In particular, if U can be taken to be

all of X , we say that C is globally variationally stable (or globally stable for short).
Obviously, Definition 4.3 subsumes Definition 4.2: if x∗ ∈ X is stable in the pointwise

sense of Definition 4.2, it is also stable when viewed as a singleton set. When this is the

case, it is also easy to see that x∗ cannot belong to some larger variationally stable set,3

so the notion of variational stability tacitly implies a certain degree of maximality. This

is made clearer in the following:

Proposition 4.4 (Mertikopoulos and Zhou, 2019). Suppose that C ⊆ X is variationally
stable. Then:

a) C is convex.
b) If C is globally stable, it coincides with the game’s set of Nash equilibria.
c) If G is concave, C is an isolated component of Nash equilibria.
d) If G is strictly coherent, C is globally stable and it coincides with X ∗ ≡ NE(G).
A second-order test to verify whether (VS) holds can be stated via the game’s HessianA Hessian test for

variational stability matrix, defined here as the block matrix H(x) = (H i j(x))i , j∈N with

H i j(x) = 1

2
∇x j∇x iu i(x) + 1

2
(∇x i∇x ju j(x))⊺

= 1

2
∇x jVi(x) + 1

2
(∇x iVj(x))⊺ (4.13)

We then have the following test for variational stability:

Proposition 4.5 (Mertikopoulos and Zhou, 2019). If x∗ is a Nash equilibrium of G and
H(x∗) ≺ 0 on TC(x∗), then x∗ is stable – and hence an isolated Nash equilibrium. In
particular, if H(x) ≺ 0 on TC(x) for all x ∈ X , x∗ is globally stable – so it is the unique
equilibrium of G.

convergence analysis . In the rest of this section, we use the notion of variational

stability to derive some general convergence results for the sequence of play induced by

(DA). Specifically, we first show that if (DA) converges to some action profile, this limit

is a Nash equilibrium; subsequently, we show that globally (resp. locally) stable states

are globally (resp. locally) attracting under (DA).

We begin by showing that if the sequence of play induced by (DA) converges to some

x∗ ∈ X with positive probability, this limit is a Nash equilibrium:

2 Recall here thatG is a potential game if it admits a potential function F∶X → R such thatV = ∇F [103, 128, 129].

We discuss potential games in more detail in the next section.

3 In that case (VS) would give ⟨V(x′), x′ − x∗⟩ = 0 for some x′ ≠ x∗, a contradiction.
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Theorem 4.6 (Mertikopoulos and Zhou, 2019). Suppose that (DA) is run with unbiased Limit points of (DA)
first-order feedback of the form (2.31) and a step-size sequence γt such that

∞
∑
t=1
( γt
θ t
)
2

<
∞
∑
t=1

γt =∞, (4.14)

where θ t = ∑t
s=1 γs . If the underlying game is concave and Xt converges to x∗ ∈ X with

positive probability, then x∗ is a Nash equilibrium of G.

Remark 4.4. Note here that the requirement (4.14) holds for every step-size policy of

the form γt ∝ 1/tb , b ≤ 1 (i.e. even for increasing γt).

We continue with a series of direct convergence results for (DA). Our analysis will

be carried out under the Fenchel reciprocity condition (Assumption 3.3) which, for

convenience, we recall below:

F(x , yk)→ 0 whenever Q(yk)→ x (3.23)

for every sequence yk ∈ Y . Under this regularity assumption, we have:

Theorem 4.7 (Mertikopoulos and Zhou, 2019). Suppose that (DA) is run with unbiased Global convergence
first-order feedback of the form (2.31) and a step-size sequence γt such that∑∞t=1 γ2t <∞
and∑∞t=1 γt =∞. If the game’s Nash set is globally stable and Assumption 3.3 holds, the
sequence of actions Xt generated by (DA) converges to a Nash equilibrium of G (a.s.).

Corollary 4.8. If G is strictly monotone or strictly coherent, Xt converges to the game’s
(necessarily unique) Nash equilibrium with probability 1.

The first step in the proof of Theorem 4.7 is to show that the sequence of dual states

Yt comprises an asymptotic pseudotrajectory (APT) of the continuous-time dynamics

(CDA).4 APTs have the key property that, in the presence of a global attractor, they

cannot stray too far from the flow of the “mean field” dynamics (CDA). However, given

that the mirror map Q may fail to be invertible, the standard theory of APTs does not

apply to the primal state sequence Xt = Q(Yt) (and convergence to equilibrium cannot

be studied in Y if X ∗ ⊊ X ○ ≡ dom ∂h). Instead, the proof of Theorem 4.7 requires

deriving a uniform bound for the convergence of the continuous-time dynamics (CDA)

to an ε-neighborhood of X ∗ ≡ NE(G), and an inductive shadowing argument to show

that no APT generated in this way may escape from this neighborhood.

In terms of the algorithm’s step-size, note that all policies of the form γt ∝ 1/tb ,
b ∈ (1/2, 1] are allowed under Theorem 4.7. The “critical” value b = 1/2 is tied to

the finite second-moment hypothesis (2.24c). If the players’ gradient observations

have finite moments up to some order q > 2, a more refined stochastic approximation

argument can be used to show that Theorem 4.7 still holds under the lighter requirement

∑∞t=1 γ
1+q/2
t < ∞. Thus, even in the presence of noise, it is possible to employ (DA)

with any step-size sequence of the form γt ∝ 1/tb , b ∈ (0, 1], provided that the noise

process Ut has E[∥Ut∥q∗ ∣ Ft] < ∞ for some q > 2/b − 2. In particular, if the noise

affecting the players’ observations has finite moments of all orders (for instance, if Ut is

sub-exponential or sub-Gaussian), it is possible to use any b ∈ (0, 1].
We now proceed to show that (DA) remains locally convergent to states that are only

locally stable with probability arbitrarily close to 1:

Theorem 4.9 (Mertikopoulos and Zhou, 2019). Fix a confidence level α > 0 and suppose Local convergence
that (DA) is run with unbiased first-order feedback of the form (2.31) and a sufficiently

4 Intuitively, this means that Yt asymptotically tracks the flowlines of (CDA) with arbitrary accuracy over

windows of arbitrary length. For a precise definition, see Benaïm [14], Benaïm and Hirsch [15] and Benaïm

et al. [16].
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small step-size γt satisfying ∑∞t=1 γ2t < ∞ and ∑∞t=1 γt = ∞. If C ⊆ X is stable and
Assumption 3.3 holds, then C is locally attracting with probability at least 1 − α; more
precisely, there exists a neighborhood U of C in X such that

P(limt→∞ Xt ∈ C ∣ X1 ∈ U) ≥ 1 − α. (4.15)

Corollary 4.10. Let x∗ be a Nash equilibrium with H(x∗) ≺ 0. Then, with assumptions
as above, x∗ is locally attracting with probability arbitrarily close to 1.

Because of the random shocks induced by the noise in the players’ gradient obser-Sharp equilibria
vations, it is difficult to obtain an almost sure (or high probability) estimate for the

convergence rate of the last iterate Xt of (DA). Specifically, even with a rapidly decreas-

ing step-size policy, a single realization of the error process Zt may lead to an arbitrarily

big jump of Xt at any time, thus destroying any almost sure bound on the convergence

rate of Xt . This obstacle can be overcome under the following condition:

Definition 4.4. We say that x∗ ∈ X is a sharp equilibrium of G if

⟨V(x∗), z⟩ ≤ 0 for all z ∈ TC(x∗), (4.16)

with equality if and only if z = 0.

Remark 4.5. The terminology “sharp” follows Polyak [116, Chapter 5.2], who introduced

a similar notion for (unconstrained) convex programs. In particular, in the single-

player case, it is easy to see that (4.16) implies that x∗ is a sharp maximum of u(x), i.e.
u(x∗)−u(x) ≥ λ∥x − x∗∥ for some λ > 0. More generally, in finite games, Definition 4.4

is equivalent to the notion of a strict Nash equilibrium (cf. Proposition 4.13 below). The

reason that we employ the terminology “sharp” instead of “strict” is that strict version of

the Nash equilibrium inequality (NE) is a weaker requirement than Definition 4.4 if the

game is not linear.

A first consequence of Definition 4.4 is that V(x∗) lies in the topological interior of

the polar cone PC(x∗) to X at x∗. In turn, this implies that sharp equilibria can only

occur at corners of X (i.e., points whose polar cone has nonempty topological interior;

for a schematic illustration, see Fig. 2.5). By continuity, this further implies that sharp

equilibria are locally stable so, by Proposition 4.4, sharp equilibria are also isolated. Our

next result shows that if players employ (DA) with surjective mirror maps, then, with

high probability, sharp equilibria are attained in a finite number of steps:

Theorem 4.11 (Mertikopoulos and Zhou, 2019). Fix a confidence level α > 0 and supposeFast convergence
to sharp equilibria that (DA) is run with unbiased first-order feedback of the form (2.31) and a sufficiently

small step-size γt satisfying∑∞t=1 γ2t <∞ and∑∞t=1 γt =∞. If x∗ ∈ dom ∂h is sharp, there
exists a neighborhood U of x∗ in X such that

P(Xt = x∗ for all sufficiently large t ∣ X1 ∈ U) ≥ 1 − α, (4.17)

In particular, if x∗ is globally stable, Xt converges to x∗ in a finite number of steps from
every initial condition (a.s.).

Theorem 4.11 suggests that dual averaging with surjective mirror maps (imQ = X
or, equivalently, X ○ ≡ dom ∂h = X ) leads to significantly faster convergence to sharp
equilibria. This is consistent with the observationsmade in Chapter 3 for the convergence

of the continuous-time, deterministic dynamics (CDA) to strict equilibria finite games.

We should also state here that this result does not hold for the eager variant of (DA):

in that case, any “bad” realization of the oracle noise process Zt can take Xt out of

equilibrium. For a detailed statement in the context of nonlinear programming, we refer

the reader to Zhou et al. [156].
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4.2.2 Positive results in finite games

We now turn to the analysis of (DA) in finite games. Concretely, given a finite game Dual averaging
in finite gamesΓ ≡ Γ(N ,A, u), we will focus on the following discrete-time implementation of (DA):

At each stage t = 1, 2, . . . , every player i ∈ N selects a pure strategy â i ,t ∈ Ai according to

their individual mixed strategy X i ,t ∈ Xi ≡ ∆(Ai). Subsequently, each player observes –

or otherwise estimates – the payoffs of their pure strategies a i ∈ Ai against the chosen

actions â−i ,t of all other players (possibly subject to some random estimation error).

Specifically, we posit that each player receives as feedback the noisy payoff signal

Vi a i ,t = u i(a i ; â−i ,t) +U i a i ,t , (4.18)

where the noise process Ut = (U i a i ,t)a i∈Ai , i∈N is assumed to satisfy (2.24). Then, based

on this feedback, players update their mixed strategies based on (DA) and the process

repeats.

Our first result in this setting concerns the elimination of dominated strategies:

Theorem 4.12 (Cohen et al., 2017). Suppose that (DA) is run with noisy payoff obser- Elimination of dominated
strategiesvations of the form (4.18) and a step-size sequence γt satisfying (4.14). If a i ∈ Ai is

dominated, then X i a i ,t → 0 with probability 1.

This result can be seen as a direct analogue of Theorem 3.4 for the continuous-time

dynamics (CDA). However, we should note here that the corresponding result does

not hold for the eager variant of (DA): even if the eager version of the algorithm is

initialized at a face of X where no dominated strategies are present, a single realization

of the noise process Ut that inverts the payoff relation of two strategies could lead to

dominated strategies remaining present (at least, infinitely often). This highlights yet

another difference between the eager and lazy variants of (DA) in the context of game-

theoretic learning (at least, when the algorithm is run with a nonsteep regularizer for

which dom ∂h = X ).
We now proceed to the question of convergence to strict Nash equilibria: to begin, Convergence to strict

Nash equilibriarecall that a Nash equilibrium x∗ of a finite game is called strict when (NE) holds as a

strict inequality for all x i ≠ x∗i . This implies that strict Nash equilibria are pure strategy

profiles x∗ = (a∗1 , . . . , a∗N) such that

u i(a∗i ; a∗−i) > u i(a i ; a∗−i) for all a i ∈ Ai /{a∗i }, i ∈ N . (4.19)

In fact, strict Nash equilibria of a finite game Γ ≡ Γ(N ,A, u) can be characterized

further as follows:

Proposition 4.13. The following are equivalent: Strict equilibria
are sharp

a) x∗ is a strict Nash equilibrium of Γ.

b) ⟨V(x∗), z⟩ ≤ −λz for some λ > 0 and all z ∈ TC(x∗).
c) x∗ is variationally stable.

d) x∗ is sharp.

Thanks to the above characterization of strict equilibria, the convergence analysis of

the previous section yields:

Proposition 4.14 (Mertikopoulos and Zhou, 2019). Let x∗ be a strict Nash equilibrium Convergence to strict
equilibriaof a finite game G and fix a confidence level α > 0. Suppose further that (DA) is run with

noisy payoff observations of the form (4.18) and a sufficiently small step-size γt such that
∑∞t=1 γ2t <∞ and∑∞t=1 γt =∞. Then:
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1. If x∗ ∈ dom ∂h, there exists a neighborhood U of x∗ such that

P(Xt = x∗ for all sufficiently large t ∣ X1 ∈ U) ≥ 1 − α. (4.20)

2. If x∗ ∉ dom ∂h and the Fenchel reciprocity condition (3.23) holds, there exists a
neighborhood U of x∗ such that

P(limt→∞ Xt = x∗ ∣ X1 ∈ U) ≥ 1 − α. (4.21)

Cohen et al. [40] proved a special case of this result for (Hedge) and further showed

that the algorithm’s convergence rate is exponential in the “running horizon” θ t = ∑t
s=1 γs .

This rate is closely linked to the logit choice model, and different mirror maps yield

different convergence speeds; for a detailed discussion, we refer the reader to [97].

4.3 learning with bandit feedback

#This section summarizes results from [26, 39]

In this section, we drop the stochastic first-order oracle feedback requirement, andBandit feedback
we focus on the bandit feedback case, i.e., when the only information at the players’

disposal is the payoffs they receive at each stage. For obvious reasons, this extra degree of

uncertainty complicates matters considerably because players must now estimate their

payoff gradients from their observed rewards. What makes matters even worse is that

an agent may introduce a non-negligible bias in the (concurrent) gradient estimation

process of another through the co-dependence of the players’ payoff functions. As a re-

sult, conventional multiple-point estimation techniques for derivative-free optimization

cannot be applied (at least, not without significant communication overhead between

players). To do away with such coordination requirements, we focus on learning pro-

cesses which could be sensibly deployed in a multi-agent setting and we explore the

resulting equilibrium convergence properties.

4.3.1 Payoff-based learning in concave games

To begin with the obvious, if players don’t have access to a first-order oracle, they will

need to construct one from the only information at their disposal: the actual payoffs they

receive at each stage. When a function can be queried at multiple points (in practice,

as few as two), there are efficient ways to estimate its gradient via directional sampling

techniques as in [2]. In a game-theoretic setting however, multiple-point estimation

techniques do not apply because, in general, a player’s payoff function depends on the

actions of all players. Thus, when a player attempts to get a second query of their payoff

function, this function may have already changed because of the action taken by another

player – i.e., instead of sampling u i(⋅ ; x−i), the i-th player would be sampling u i(⋅ ; x′−i)
for some x′−i ≠ x−i .
Following Spall [141] and Flaxman et al. [51], we posit instead that players rely on aSimultaneous

perturbation stochastic
approximation

simultaneous perturbation stochastic approximation (SPSA) approach that allows them

to estimate their individual payoff gradients Vi based off a single function evaluation. In

detail, the key steps of this one-shot estimation process for each player i ∈ N are:

1. Fix a query radius δ > 0.5
2. Pick a pivot point x i ∈ Xi where player i seeks to estimate their payoff gradient.

3. Draw a vector z i from the unit sphere Si ≡ Sn i of Vi ≡ Rn i and play x̂ i = x i + δz i .6

5 For simplicity, we take δ equal for all players; the extension to player-specific δ is straightforward.
6 We tacitly assume here that the query directions z i ∈ Sn i are drawn independently across players.



4.3 learning with bandit feedback 61

4. Receive û i = u i(x̂ i ; x̂−i) and define the SPSA oracle

v̂ i =
n i

δ
û i z i . (SPSA)

By adapting a standard argument based on Stokes’ theorem [26], it can be shown that

v̂ i is an unbiased estimator of the individual gradient of the δ-smoothed payoff function

uδ
i (x) =

1

vol(δBi)∏ j≠i vol(δS j) ∫δBi
∫∏ j≠i δS j

u i(x i +w i ; x−i + z−i) dz1⋯ dw i ⋯ dzN

(4.22)

with Bi ≡ Bn i denoting the unit ball of Vi .7 If Vi is Lipschitz continuous, then ∥∇iu i −
∇iuδ

i ∥∞ = O(δ), so this estimate becomes more and more accurate as δ → 0+. On the

other hand, the second moment of v̂ i grows as

E[∥v̂ i∥2] =
n2
i

δ2
E[∥û iz i∥2] = O(1/δ2), (4.23)

implying in turn that the variability of v̂ i grows unbounded as δ → 0+. Thismanifestation

of the bias-variance dilemma plays a crucial role in designing no-regret policies with

bandit feedback [51, 79], so δ must be chosen with care.

However, before dealing with this choice, it is important to highlight two feasibility Feasibility issues
issues that arise with the single-shot SPSA estimate (SPSA). The first has to do with

the fact that the perturbation direction z i is chosen from the unit sphere Si so it may

fail to be tangent to Xi , even when x i is interior. To iron out this wrinkle, it suffices to

sample z i from the intersection of Si with the affine hull of Xi in Vi ; on that account

(and without loss of generality), we will assume in what follows that each Xi is a convex
body of Vi , i.e., it has nonempty topological interior.

The second feasibility issue concerns the size of the perturbation step: even if z i is a
feasible direction of motion, the query point x̂ i = x i + δz i may be unfeasible if x i is too
close to the boundary of Xi . For this reason, we will introduce a “safety net” in the spirit

of Bubeck and Cesa-Bianchi [30], and we will constrain the set of possible pivot points

x i to lie within a suitably “deflated” zone of X .
Tomake this precise, letBR i (p i) be anR i-ball centered at p i ∈ Xi so thatBR i (p i) ⊆ Xi . A safety net

for samplingThen, instead of perturbing x i by z i , we consider the feasibility adjustment

w i = z i − R−1i (x i − p i), (4.24)

and each player plays x̂ i = x i + δw i instead of x i + δz i . In other words, this adjustment

moves each pivot to xδi = x i − R−1i δ(x i − p i), i.e.,O(δ)-closer to the interior base point
p i , and then perturbs xδi by δz i . Feasibility of the query point is then ensured by noting

that

x̂ i = xδi + δz i = (1 − R−1i δ)x i + R−1i δ(p i + R iz i), (4.25)

so x̂ i ∈ Xi whenever δ/R i < 1 (since p i + R iz i ∈ BR i (p i) ⊆ Xi).

The difference between this estimator and the oracle framework we discussed above is Estimation bias
twofold. First, each player’s realized action is x̂ i = x i + δw i , not x i , so there is a disparity
between the point at which payoffs are queried and the action profile where the oracle

is called. Second, the resulting estimator (SPSA) is not unbiased, so the analysis of the

previous section does not apply (since it was carried out under the assumption that

Bt = 0). In particular, given the feasibility adjustment (4.24), the estimate (SPSA) with

x̂ given by (4.25) satisfies

E[v̂ i] = ∇iuδ
i (xδi ; xδ−i), (4.26)

7 For simplicity, we assume throughout this section that ∥⋅∥ is the Euclidean norm.
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Algorithm 4.1: Bandit dual averaging [player indices suppressed]

Require: step-size sequence γt; query radius sequence δt; ball BR(p) ⊆ X
1: choose Y1 ∈ Y # initialization
2: for t = 1, 2, . . . do
3: set Xt ← Q(Yt) # set pivot
4: draw zt uniformly from Sn # perturbation direction
5: set Wt ← zt − R−1(Xt − p) # query direction
6: play X̂t ← Xt + δtWt # choose action
7: receive ût ← u(X̂t) # get payoff
8: set Vt ← (n/δt)ût ⋅ zt # estimate gradient
9: end for

so there are two sources of systematic error: anO(δ) perturbation in the function, and

anO(δ) perturbation of each player’s pivot point from x i to xδi .
To capture both sources of bias and separate them from the random noise, we will

write

v̂ i = Vi(x) +U i + b i (4.27)

where U i = v̂ i −E[v̂ i] and b i = ∇iuδ
i (xδ) −∇iu i(x). We are thus led to the following

manifestation of the bias-variance dilemma: the bias term b in (4.27) isO(δ), but the
second moment of the noise term U isO(1/δ2); as such, an increase in accuracy (small

bias) would result in a commensurate loss of precision (large noise variance).

Now, combining the learning framework of the previous section with (SPSA), weDual averaging
with bandit feedback obtain the bandit dual averaging (BDA) algorithm:

X̂t = Xt + δtWt

Yt+1 = Yt + γtVt

Xt+1 = Q(Yt+1)
(BDA)

In the above, the perturbationsWt and the SPSA estimates Vt are respectively given by

Wi ,t = z i ,t − R−1i (X i ,t − p i) Vi ,t = (n i/δt)u i(X̂t) z i ,t (4.28)

with each z i ,t drawn independently and uniformly across players at each stage t; see also
Algorithm 4.1 for a pseudocode implementation and Fig. 4.2 for a schematic representa-

tion.

Our first result below shows that (BDA) converges to equilibrium in monotone games:

Theorem 4.15 (Bravo et al., 2018). Let G ≡ G(N ,X , u) be a strictly monotone game, andConvergence in
strictly monotone games suppose that (BDA) is run with variable step-size γt and query radius δt such that

lim
t→∞

γt = lim
t→∞

δt = 0,
∞
∑
t=1

γt =∞,
∞
∑
t=1

γtδt <∞, and
∞
∑
t=1

γ2t
δ2t
<∞. (4.29)

Then, the sequence of realized actions X̂t converges to the (necessarily unique) Nash equi-
librium of G with probability 1.

Even though the setting is different, the conditions (4.29) for the tuning of the al-Parameter tuning
gorithm’s parameters are akin to those encountered in Kiefer–Wolfowitz stochastic

approximation schemes and serve a similar purpose. First, the conditions limt→∞ γt = 0
and∑∞t=1 γt =∞ respectively mitigate the method’s inherent randomness and ensure a

running horizon of sufficient length. The requirement limt→∞ δt = 0 is also straightfor-
ward to explain: as players accrue more information, they need to decrease the sampling

bias in order to have any hope of converging. However, decreasing δ also increases the
variance of the players’ gradient estimates, which might grow to infinity as δ → 0. The
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δ1

z1

+δ1z1 +
nγ2 û2
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Figure 4.2: Schematic representation of (BDA) with (lazy) Euclidean projections. For clarity, we

did not include the feasibility adjustment R−1(x − p) in the action selection step.

crucial observation here is that new gradients enter the algorithm with a weight of γt
so the aggregate bias after t stages is of the order of O(∑t

s=1 γsδs) and its variance is

O(∑t
s=1 γ2s /δ2s ).

Of course, since Theorem 4.15 is asymptotic in nature, it is not clear how to choose On the choice
of γt and δtγt and δt so as to optimize the method’s convergence rate. Heuristically, if we take

schedules of the form γt = γ/tb and δt = δ/tc with γ, δ > 0 and 0 < b, c ≤ 1, the only
conditions imposed by (4.29) are b + c > 1 and b − c > 1/2. However, as we discussed
above, the aggregate bias in the algorithm after t stages isO(∑t

s=1 γtδt) = O(1/tb+c−1)
and its variance isO(∑t

s=1 γ2s /δ2s ) = O(1/t2b−2c−1): if the conditions (4.29) are satisfied,
both error terms vanish, but they might do so at very different rates. By equating these

exponents in order to bridge this gap, we obtain c = b/3; moreover, since the single-shot

SPSA estimator (SPSA) introduces a Θ(δt) random perturbation, c should be taken as

large as possible to ensure that this perturbation vanishes at the fastest possible rate. As

a result, the most suitable choice for b and c seems to be b = 1, c = 1/3, leading to an

error bound ofO(1/t1/3).
We show below that this bound is indeed attainable for games that are strongly mono-

tone in the sense of (2.77), i.e., there exists some α > 0 such that

⟨V(x′) − V(x), x′ − x⟩ ≤ −α∥x′ − x∥2 for all x , x′ ∈ X . (4.30)

Focusing for expository reasons on the Euclidean incarnation of the method (h(x) =
∥x∥2/2 for x ∈ X ), we have:

Theorem 4.16. Let x∗ be the (necessarily unique) Nash equilibrium of an α-strongly Convergence rate in
strongly monotone gamesmonotone game. If the players follow (BDA) with Euclidean projections and parameters

γt = γ/t and δt = δ/t1/3 with γ > 1/(3α) and δ > 0, we have

E[∥X̂t − x∗∥2] = O(t−1/3). (4.31)

We note in the above that the step-size schedule γt ∝ 1/t is not required in order to Comparison with
existing ratesobtain anO(t−1/3) convergence rate: more general schedules of the form γt ∝ 1/tb and

δt ∝ 1/tc with b > 3/4 and c = b/3 > 1/4, still guarantee anO(t−1/3) rate of convergence
for (BDA). To put things in perspective, if (DA) is run with first-order oracle feedback

satisfying the statistical assumptions (2.24), the rate of convergence becomes O(1/t).
Viewed in this light, the price for not having access to gradient information is no higher

thanO(t−2/3) in terms of the players’ equilibration rate.

Finally, it is also worth comparing the bound (6.9) to the attainable rates for stochastic

convex optimization (the single-player case). For problems with objectives that are

both strongly convex and smooth, Agarwal et al. [2] attained anO(t−1/2) convergence
rate with bandit feedback, which Shamir [138] showed is unimprovable. Thus, in the
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Algorithm 4.2: EXP3 [player indices suppressed]

Require: step-size γt > 0; exploration factor δt > 0
1: choose Y1 ∈ Y # initialization
2: for t = 1, 2, . . . do
3: set Xt ← (1 − δt)Λ(Yt) + δt unif # choose mixed strategy
4: play ât ∼ Xt # choose action
5: receive ût = u(ât) # get payoff
6: set Vt = (ût/X â t ,t)e â t # estimate payoffs
7: update Yt+1 ← Yt + γtVt # update scores
8: end for

single-player case, the bound (6.9) is off by t1/6 and coincides with the bound of Agarwal
et al. [2] for strongly convex functions that are not necessarily smooth.

One reason for this gap is that the Θ(t−1/2) bound of Shamir [138] concerns theAveraging vs.
last iterate smoothed-out time average X̄t = t−1∑t

s=1 Xs , while our analysis concerns the sequence

of realized actions X̂t . This difference is semantically significant: In optimization, the

query sequence is just a means to an end, and only the algorithm’s output matters (i.e.,

X̄t). In a game-theoretic setting however, it is the players’ realized actions that determine

their rewards at each stage, so the figure of merit is the actual sequence of play X̂t . This

sequence is more difficult to control, so this disparity is, perhaps, not too surprising;

nevertheless, we believe that this gap can be closed by using a more sophisticated single-

shot estimate, e.g., as in the recent work of Bubeck and Eldan [31, 32]. We defer this

analysis to future work.

4.3.2 Payoff-based learning in finite games

In the context of finite games, learning with bandit feedback is tantamount to players

observing their realized in-game payoffs

û i = u i(â i ; â−i) (4.32)

where â i ∈ Ai denotes the action chosen by the i-th player according to some mixed

strategy x i ∈ Xi ∈ ∆(Ai). Already, this shows that the finite game framework is markedly

different from the continuous game framework studied in the previous section: the

expected payoff u i(x̂) at a perturbed mixed strategy x̂ cannot be observed, so the SPSA

estimator used to run (BDA) cannot be employed either.

The reason for this is that players have no information about the payoffs of strategiesImportance
sampling that were not chosen, so a new estimator must be constructed for that purpose. A

standard way to do so is via the importance sampling (IS) estimator:

v̂ i a i =
1(a i = â i)

x i a i

û i =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u i(â i ; â−i)
x i a i

if a i = â i ,

0 otherwise.

(4.33)

Indeed, a straightforward calculation shows that

E[v̂ i a i ] = ∑
a−i∈A−i

x−i ,a−i ∑
a′i∈Ai

x i a′i
1(a′i = â i)

x i a′i
u i(a′i ; a−i)

= u i(a i ; x−i) ≡ u i a i (x). (4.34)

i.e., the estimator (4.33) is unbiased in the sense of (2.24). On the other hand, a similar

calculation shows that the variance of v̂ i a i grows asO(1/x i a i ), implying that (2.24c) may

fail to hold if the players’ action choice probabilities become arbitrarily small.
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Motivated by the seminal work of [7], we will focus on a variant of (Hedge) with an

explicit exploration factor which mixes the logit choice model with uniform action selec-

tion. The resulting algorithm is known as exploration and exploitation with exponential
weights (EXP3), and it can be stated in recursive form as: The EXP3

algorithm

X i ,t = (1 − δt)Λ i(Yi ,t) + δt unif i
Yt+1 = Yi ,t + γtVi ,t

(EXP3)

where

1. δt > 0 is a time-dependent exploration factor (discussed in detail below).

2. Λ i ∶RAi → ∆(Ai) is the logit choice map (2.62).

3. unif i = 1/∣Ai ∣ denotes the uniform distribution onAi ,

4. Vt is given by the estimator (4.33), viz.,

Vi a i ,t =
1(a i = â i ,t)

X i a i ,t
u i(â i ,t ; â−i ,t), (4.35)

where â i ,t ∈ Ai denotes the realized action of player i at time t.

For a pseudocode implementation, see also Algorithm 4.2 above.

To examine the equilibrium convergence properties of (EXP3), we will focus on the

class of potential games, i.e., games that admit a potential function F∶A→ R such that

u i(a′i ; a−i) − u i(a i ; a−i) = F(a′i ; a−i) − F(a i ; a−i) (4.36)

for all a i , a′i ∈ Ai , a−i ∈ A−i , and all i ∈ N . This class of games is equivalent to the

class of atomic non-splittable congestion games [124, 128] and has wide applications in

operations research, economics, network design, and many other fields. As opposed to

arbitrary finite games, potential games always admit pure Nash equilibria; moreover,

such equilibria are generically strict.

In this context, we have the following general result for (EXP3):

Theorem 4.17 (Cohen et al., 2017). Let Γ ≡ Γ(N ,A, u) be a generic potential game. Convergence of EXP3
in potential gamesSuppose further that (EXP3) is run with a step-size sequence of the form γt ∝ 1/tb ,

b ∈ (1/2, 1], and a decreasing exploration factor δt ↓ 0 such that

lim
t→∞

γt
δ2t
= 0,

∞
∑
t=1

γ2t
δt
<∞, and lim

t→∞
δt − δt+1

γ2t
= 0. (4.37)

Then, with probability 1, Xt converges to a strict Nash equilibrium of Γ.

The main challenge in proving Theorem 4.17 is that, unless the “innovation term”

Ut = Vt − V(Xt) has bounded variance, the general theory of Benaïm [14] does not

imply that Xt forms an asymptotic pseudotrajectory of the underlying mean dynamics

– here, the unperturbed replicator system (RD). Nevertheless, under the summability

condition (4.37), it is possible to show that this is the case by using a martingale limit

argument based on Burkholder’s inequality. Furthermore, under the stated conditions,

it is also possible to show that if Xt converges, its limit is necessarily a strict equilibrium

of Γ.

Importantly, the summability condition (4.37) imposes a lower bound on the step-size

exponent b: In particular, if b = 1/2, (4.37) cannot hold for any vanishing sequence of

exploration factors δt ↓ 0. Given that the innovation term Zt is bounded, we conjecture

that this sufficient condition is not tight and can be relaxed further. This issue is left for

future work.
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Weclose this section by noting thatTheorem 4.17 should be contrasted to earlier results

by Kleinberg et al. [78] who showed that, after a transient stage of polynomial length,

players end up playing a pure equilibrium for a fraction of time that is arbitrarily close to

1 with probability also arbitrarily close to 1. Mehta et al. [89] obtained a stronger result for

(generic) 2-player coordination games, showing that themultiplicative weights algorithm

(a linearized variant of the EW algorithm) converges to a pure Nash equilibrium for all

but a measure 0 of initial conditions. However, in both these works, players are assumed

to have full (though possibly imperfect) knowledge of their payoff vectors, including

actions that were not chosen.

In a bona fide bandit framework, the closest antecedent to Theorem 4.17 is the work of

Coucheney et al. [42] and Leslie and Collins [84] who showed that a “penalty-regulated”

variant of (Hedge) converges to ε-logit equilibria in congestion games. In this light,

Theorem 4.17 should also be contrasted to the results of Cominetti et al. [41] and Bravo

[24] who established the convergence of an algorithm similar to (EXP3) in any game.

The limit point of the algorithms considered by Cominetti et al. [41] and Bravo [24] is a

logit equilibrium of the underlying game, though not necessarily an ε-equilibrium for

arbitrarily small ε. Extending the analysis of Cominetti et al. [41] and Bravo [24] to the

study of (EXP3) in arbitrary games is a very fruitful direction for future research.
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APPLICATIONS





5
DISTRIBUTED OPTIMIZATION IN MULTIPLE-WORKER SYSTEMS

V
ery large-scale (VLS) optimization problems are often solved by distributing them

over computer clusters and parallel computing grids capable of performing between

1015 and 1018 floating-point operations per second (in the exaFLOPS regime). However,

this massive parallelization comes with its own unique set of challenges: independently

coordinated computations and verification, fault detection and management, perfor-

mance irregularities, and massive communication overhead are only some of the prob-

lems that arise in high-performance computing (HPC) applications. In this context,

modeling each node of a computing cluster as an independent agent can provide valu-

able insights into optimizing the system’s overall performance. Accordingly, the online

learning methodologies and techniques developed in the previous chapters arise as a

natural framework for examining large-scale distributed optimization problems.

One of the most widely used methods for solving VLS problems is distributed asyn- DASGD schemes
chronous stochastic gradient descent (DASGD), a family of algorithms that results from

parallelizing stochastic gradient descent (SGD) on distributed computing architectures.

However, a key obstacle in the efficient implementation of DASGD is the issue of de-
lays: when a node contributes a gradient update in an online manner, the global model

parameter may have already been updated by other nodes several times over, thereby

rendering this gradient update stale. These delays can quickly add up if the computa-

tional throughput of a node is saturated, so the convergence of DASGDmethods may

be compromised in the presence of large delays. In the sections that follow, we use

the online learning methodologies developed in the previous chapters to establish the

convergence of DASGD methods, even when the observed delays grow large.

5.1 multiple-worker systems

#The following sections summarize results from [154, 155]

Let X be a closed convex subset of Rn . Throughout the sequel, we will focus on the Distributed and
stochastic optimizationstochastic optimization problem (Opt-S) first introduced in Chapter 2, viz.

minimize f (x)
subject to x ∈ X ,

(Opt-S)

where the objective function f ∶X → R is of the form

f (x) = E[F(x;ω)] (5.1)

for some random function F∶X × Ω → R defined over some (complete) probability

space (Ω,F ,P). As is well known in the literature [18], the stochastic expectation in

(5.1) contains as a special case the standard distributed optimization objective

f (x) = 1

N

N

∑
i=1

f i(x) (5.2)

69
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Algorithm 5.1: Master-slave implementation of stochastic gradient descent

Require: Master and K workers, k = 1, . . . ,K
1: repeat
2: Master:

(a) Pull stochastic gradient from worker
(b) Update current state
(c) Push state to worker

3: Workers:
(a) Pull state from master
(b) Compute stochastic gradient
(c) Push gradient update to master

4: until end

where each f i ∶X → R is the loss associated with the i-th training sample.1 Specifically,

the general functional form (5.2) encompasses a wide variety of machine learning tasks

ranging from empirical risk minimization with uniform weights to least squares and

logistic regression, suppport vector machines (SVMs), matrix completion, and many

other model-based problems.

In terms of regularity, we make the following blanket assumptions in the sequel:Blanket assumptions

Assumption 5.1. The solution set X ∗ ≡ argmin f of (Opt-S) is nonempty.

Assumption 5.2. F is twice continuously differentiable in x for P-almost all ω ∈ Ω.

Assumption 5.3. ∇ F has bounded secondmoments, i.e., supx∈X E[∥∇F(x;ω)∥2∗] <∞.

By the dominated convergence theorem, Assumptions 5.2 and 5.3 together imply that

f is differentiable and ∇ f (x) = ∇E[F(x;ω)] = E[∇F(x;ω)].2 Assumption 5.2 then

implies that ∇ f is Lipschitz continuous. Since f is continuous and X is closed, the

solution set X ∗ of (Opt-S) is itself closed. We will make free use of these facts in the

sequel.

5.1.1 Master-slave architectures

Our main goal here is to solve the optimization problem (Opt-S) in multiple-workerMaster-slave
architectures architectures, a widely used distributed computing framework for data-centers and

parallel computing grids. One of the standard ways of deploying SGD methods in such

systems – and that which we adopt in this section – is for the workers to asychronously

compute stochastic gradients and then send them to the master,3 while the master

updates the global state of the system and pushes the update back to the workers [18, 145].

For a pseudocode implementation of this process, see Algorithm 5.1.

Due to the distributed nature of the master-slave system, a gradient received by the

master on any given iteration can be stale: namely, there are delays in receiving local

gradients from workers. As a simple example, consider a fully coordinated update

scheme where each worker sends the computed gradient to and receives the updated

iterate from the master following a round-robin schedule. In this case, each worker’s

gradient is received with a delay exactly equal to K − 1 (K is the number of workers in

the system), because by the time the master receives worker K’s computed gradient, the

master has already applied K − 1 gradient updates from workers 1 to K − 1 (and since the
schedule is round-robin, this delay of K − 1 is true for any one of the K workers).

1 For instance, this setup corresponds to empirical risk minimization with uniform weights.

2 Note that finite second moments automatically imply finite first moments, which in turns guarantees that the

expectation of the gradient exists.

3 In machine learning applications, this is done by sampling a subset of the training data, computing the gradient

for each data point and averaging over all points in the sample.
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However, delays can be much worse since we allow full asynchrony: workers can

compute and send (stochastic) gradients to the master without any coordinated schedule.

In the asynchronous setting, fast workers (i.e., workers that are fast in computing gradi-

ents) will cause disproprotionately large delays to gradients produced by slow workers.

Specifically, when a slower worker has finished computing a gradient, a fast worker may

have already computed and communicated many gradients to the master. Since the

master updates the global state of the system, one can gain a clearer representation of

this scheme by looking at the master’s update; we do so in Section 5.1.3 below.

5.1.2 Multi-core systems with shared memory

Another popular way of solving very large scale problems of the form (Opt-S) is by Multi-core
systemsdistributing them over multi-core clusters with shared memory. In this architecture, all

processors can access a global memory which holds all the data needed for computing

a gradient (as well as the system’s state). The standard way of deploying SGD in such

systems is for each processor to independently and asychronously read the current global

iterate, compute a stochastic gradient, and then update the global iterate in the shared

memory [18].4 This process is presented below as Algorithm 5.2:

Algorithm 5.2: Multi-core stochastic gradient descent with shared memory

Require: K cores with shared memory

1: Commit initial state to memory

2: repeat

3: do in parallel for each core

(a) Pull current state

(b) Compute stochastic gradient

(c) Push updated state

4: until end

The key difference from Algorithm 5.1 is that there is no central entity that updates the

global state; instead, each processor can both read the global state and update it. Since

each core is performing the operations asynchronously, different cores may be reading

the same global iterate at the same time. Further, the delays in this case are again caused

by the heterogeneity across different cores: if a processor is slow in computing gradients,

then by the time it finishes computing its gradient, the global state has been updated by

other, faster processors many times over, thereby making its own gradient stale.

Here, we also adopt a common assumption that updating the global state is an atomic

operation (and hence no two processors will be updating the global iterate at the same

time). This is particularly true if the number of variables (i.e. the dimension of the

decision variable) is not of a super-large scale (in the order of trillions of variables). The

analysis presented here can be further extended to cases where only one variable or a

small block of variables are being updated at a time. However, we omit this discussion

because the resulting notation is quite onerous, and will obscure the main ideas behind

an already complex framework.

5.1.3 DASGD: A unified algorithmic representation

We now present a unified algorithmic description, aptly called distributed asynchronous The DASGD
methodstochastic gradient descent (DASGD), that formally captures both Algorithms 5.1 and 5.2.

This process is encoded in pseudocode form as Algorithm 5.3 below.

4 This is again done by sampling a subset of the training data in the global memory and computing the gradient

at the iterate for each datapoint and averaging over all the comptued gradients in the sample.
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Algorithm 5.3: Distributed asynchronous stochastic gradient descent

Require: step-size sequence γt > 0
1: choose Y1 ∈ Rn # initialization
2: for t = 1, 2, . . . do
3: set Xt ← Π(Yt) # state update
4: receive Vt = −∇F(Xs t ;ωs t ) # gradient update
5: set Yt+1 = Yt + γtVt # gradient step
6: end for
7: return solution candidate Xt

In Algorithm 5.3, t = 1, 2, . . . is a global counter which is incremented every time an

update occurs to the current solution candidate Xt (the global state): in master-slave

systems, Xt is updated by the master; in multi-core systems, Xt is updated by each

processor separately.

Since there are delays in both systems, the gradient applied to the current iterate Xt
can be a gradient associated with a previous time step. This fact is abstractly captured by

the second line in Algorithm 5.3. In full generality, we will write st for the iteration from

which the gradient received at time t originated. In other words, the delay associated

with iteration st is t − st , since it took t − st iterations for the gradient computed on

iteration st to be received at stage t. Note that st is always no larger than t; and if t = st ,
then there is no delay in iteration t.

The basic difference between the two distributed computing archecitures is reflectedDifference between
architectures in the assumptions for st . Specifically, in master-slave systems, each s(⋅) is a one-to-one

function because no two workers will ever receive the same update from the master

(except possibly at initialization). On the other hand, in multi-core systems, st can be

the same for different t’s (since different processors may read the current iterate at the

same time); however, it is easy to observe that the same s will appear at most K times for

different t’s, since there are K processors in total. Our analysis is agnostic to whether st
is one-to-one or not so, in analysing the meta-algorithm DASGD, we obtain guarantees

for both architectures simultaneously.

Notation-wise, we will write dt for the delay required to compute a gradient requested

at iteration t. This gradient is received at iteration t + dt . Following this notation, the

delay for a gradient received at t is ds t = t − st . Note also we have chosen the subscript

associatedwithω to be t: we can do so becauseωt ’s are i.i.d. (so the indexing is irrelevant).

5.2 analysis and results

5.2.1 Nonconvex unconstrained problems

Motivated by its applications to machine learning models and neural network training,

we begin with the case where X = Rn and f is (possibly) non-convex. In this setting

(and in the absence of more rigid assumptions), a standard metric to determine the

stability of the algorithm is to show that gradients vanish in the long run.5

Our goal in this section will be to establish a mean square performance guarantee ofRelating delays
to step-sizes DASGD in the presence of delays. Our main assumption in this regard will be as follows:

Assumption 5.4. The step-size sequence γt of DASGD (Algorithm 5.3) is tuned relative

to the delay process dt as follows:

5 An alternative phrase that is commonly used is that the so-called “criticality gap” vanishes. This is also

colloquially – but unfortunately – referred to as “convergence to a critical point” in much of the machine

learning literture.
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1. For bounded delays, i.e., supt dt ≤ D for some D > 0:

∞
∑
t=1

γ2t <∞ and
∞
∑
t=1

γt =∞ (5.3a)

2. For sublinearly growing delays, i.e., dt = O(tp) for some p ∈ (0, 1):

γt ∝
1

t
(5.3b)

3. For linearly growing delays, i.e., dt = Θ(t)

γt ∝
1

t log t
(5.3c)

4. For polynomially growing delays, i.e., dt = O(tq) for some q ≥ 1:

γt ∝
1

t log t log log t
(5.3d)

Note that as delays get larger, Assumption 5.4 prescribes less aggressive step-size Step-sizes as delay
mitigatorspolicies. This is to be expected because the larger the delays, the more “averaging" one

needs perform in order to mitigate the staleness that is caused by the delays (and smaller

step-sizes correspond to averaging over a longer horizon). This is one of the important

insights gained by the analysis to follow.

Another thing worth pointing out is that Assumption 5.4 also highlights the quantita-

tive relationship between the class of delays and the class of step-sizes. For instance, when

the delays increase from a linear rate to a polynomial rate, only a factor of 1/ log log t
needs to be added (which is effectively a constant). From a practical standpoint, this

means that a step-size on the order of 1/(t log t) will be a good model-agnostic choice

and should suffice for almost all delay processes.

We now proceed to establish the theoretical convergence guarantees of DASGD for Convergence in
non-convex problemsgeneral non-convex objectives. By leveraging the Lipschitz continuity of the gradient, a

telescoping sum argument, and a careful analysis of the interplay between delays and

step-sizes, we obtain the following convergence result:

Theorem 5.1 (Zhou et al., 2018). Let Xt be the sequence of states generated by the DASGD
algorithm (Algorithm 5.3). Then, under Assumptions 5.1–5.4, we have:

lim
t→∞

E[∥∇ f (Xt)∥2∗] = 0. (5.4)

Theorem 5.1 provides a fairly strong characterization of the long-run behavior of

DASGD. In particular, it implies that the norm of the gradient vanishes in expectation,

and that the gradient converges to 0 with high probability. In fact, if we strengthen

Assumption 5.3 to posit that the problem’s stochastic gradients are bounded almost

surely (as opoosed to L2), the statement of Theorem 5.1 can be likewised strengthened

to almost sure convergence of ∥∇ f (Xt)∥∗ to 0. Given that stochastic gradients are uni-

formly bounded in model-based machine learning problems, this remark is particularly

important for applications to machine learning and artificial intelligence.

5.2.2 Convex problems

We now turn to more structured problems and, in particular, convex ones:

Assumption 5.5. f ∶X → R is convex.
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Of course, in contrast to the non-convex regime, convexity allows for a significantly

finer convergence analysis and, in particular, targeting the algorithm’s convergence

to a global solution of (Opt-S). Our first result is an auxiliary proposition that is of

independent interest: with probability 1, the sequence of states Xt generated by DASGD

admits a subsequence converging to a global minimizer of (Opt-S). Formally, we have:

Proposition 5.2. Let Xt be the sequence of states generated by the DASGD algorithmA convergent subsequence
(Algorithm 5.3). Then, under Assumptions 5.1–5.5, there exists with probability 1 a (possibly
random) subsequence Xtk of Xt such that limk→∞ Xtk ∈ X ∗.

The convexity of f (cf. Assumption 5.5 above) plays a crucial role in the proof of

Proposition 5.2; for general nonconvex objectives, the arguments used in the proof of

Proposition 5.2 do not suffice to establish subsequential convergence even to a critical

point of f (at least, not without some extra structural assumption). On the other hand,

the second important element of our analysis is not related to convexity; it states that Xt
is an asymptotic pseudotrajectory of the continuous-time dynamics (CDA) with (lazy)

Euclidean projections:

Proposition 5.3. Let Xt be the sequence of states generated by the DASGD algorithmDASGD is an
APT of (CDA) (Algorithm 5.3). Then, under Assumptions 5.1–5.4, Xt is an APT of the dynamics (CDA)

with V(x) = −∇ f (x).

The convergence of the continuous-time dynamcis (CDA) to x∗ essentially follows
from the analysis of Chapter 3. However, this is not sufficient in itself to establish the

convergence of Xt to a solution of (Opt-S). To do that, we further need to show with a

separate energy argument that, if Xt gets ε-close to a minimizer of f (and, in particular,

the subsequence limit point whose existence is guaranteed by Proposition 5.2), then it

is “trapped” in aO(ε) neighborhood of said point for large enough t. This is done by

controlling the “energy” (as defined by the Fenchel coupling) of the ODE trajectory, and

then bounding its difference from the discrete-time sequence Xt via the APT property.

Fleshing out this analysis, we finally obtain the following almost sure convergence result:

Theorem 5.4. Let Xt be the sequence of states generated by the DASGD algorithm (Algo-Global convergence in
convex problems rithm 5.3) under Assumptions 5.1–5.5. Then, Xt converges to a (possibly random) solution

of (Opt-S) with probability 1.

We examine the practical implications of Theorems 5.1 and 5.4 in the next section.

5.2.3 Numerical experiments

We close our discussion with a suite of numerical experiments for DASGD. Specifically,Performance in a
nonconvex benchmark we test the convergence of Algorithm 5.3 against a test function with n = 105 degrees of

freedom based on the Rosenbrock optimization benchmark. Specifically, we consider

the objective

f (x) =
10

5−1
∑
i=1
[105(x i+1 − x2i )2 + (1 − x i)2], (5.5)

with x i ∈ [0, 2], i = 1, . . . , 105. The global minimumof f is located at (1, . . . , 1), at the end
of a very thin and very flat parabolic valley which is notoriously difficult for first-order

methods to traverse [123]. Since the minimum of the Rosenbrock function is known, it

is easy to validate the performance of DASGD methods in this setting.

For our numerical experiments, we considered a) a synchronous update schedule as
a baseline; and b) an asynchronous master-slave framework with random delays that

scale as dt = Θ(t). In both cases, Algorithm 5.3 was run with a decreasing step-size of

the form γt ∝ 1/(t log t) and stochastic gradients drawn from a standard multivariate

Gaussian distribution (i.e., zero mean and identity covariance matrix).
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(b) Convergence under linearly growing delays

Figure 5.1: Convergence of DASGD in a non-convex problem with n = 105 degrees of freedom.

Our results are shown in Fig. 5.1. Starting from a random (but otherwise fixed) initial

condition, we ran S = 105 realizations of DASGD (with and without delays). We then

plotted a randomly chosen trajectory (“test sample” in Fig. 5.1), the sample average, and

the min/max over all samples at every update epoch. For comparison purposes, we also

plotted the value of the so-called “ergodic average”

X̄t =
∑t

s=1 γsXs

∑t
s=1 γs

, (5.6)

which is often used in the analysis of DASGD in the convex case.

Even though this averaging leads to very robust convergence rate estimates in the

convex case, we see here that it performsworse than the worst realization of DASGD. The

reason for this is the lack of convexity: due to the ridges and talwegs of the Rosenbrock

function, Jensen’s inequality fails dramatically to produce an improvement over Xt (and,

in fact, causes delays as it causes Xt to deviate from its gradient path). Consequently,

this simple suite of experiments indicates that establishing convergence of the iterate Xt
itself is not only theoretically stronger than convergence of the ergodic average, but also

leads to better results in non-convex problems.





6
SIGNAL COVARIANCE OPTIMIZATION IN WIRELESS NETWORKS

I
t this chapter, we apply the online learning techniques discussed earlier in this ma-

nuscript to derive and analyze the matrix exponential learning (MXL) algorithm, a

semidefinite optimization method for throughput maximization in multiple-input and

multiple-output (MIMO) systems – also known as Gaussian vector channels in signal

processing and information theory. After introducing the problem in Section 6.1 below,

we present the MXL algorithm and its main performance guarantees in Section 6.2, and

we provide a set of experiments under realistic channel conditions in Section 6.3.

6.1 system model and assumptions

#The following sections summarize results from [91, 98, 100]

AMIMOmultiple access channel (MAC) consists of a finite set of wireless devices MIMO channel model
k ∈ K ≡ {1, . . . ,K} that transmit simultaneously over a common channel to a base

receiver with N antennas. If the k-th transmitter is equipped withMk transmit antennas,

the signal at the receiver can be expressed via the standard baseband model

y =∑K
k=1Hkxk + z, (6.1)

where:

1. xk ∈ CMk is the signal transmitted by the k-th device.

2. y ∈ CN denotes the aggregate signal at the receiver.

3. Hk ∈ CN×Mk is the N ×Mk channel matrix of the k-th device.

4. z ∈ CN is the ambient noise in the channel, including thermal, atmospheric and

other peripheral interference effects (and modeled for simplicity as a zero-mean,

circulant Gaussian vector with unit covariance).

In this context, the transmit power of the k-th device is simply

pk = E [∥xk∥2] = tr(Qk), (6.2)

whereQk denotes the corresponding signal covariance matrix

Qk = E [xkx†k] (6.3)

and the expectation is taken over the Gaussian codebook of the k-th device. Hence,

assuming that each device’s maximum transmit power is finite, we obtain the feasibility

constraints:

Qk ≽ 0 and tr(Qk) ≤ Pk , (6.4)

where Pk > 0 denotes the maximum transmit power of the k-th device.

Our analysis focuses on static channels, i.e.,Hk will be assumed to remain constant Shannon–Telatar capacity
(or nearly constant) throughout the transmission horizon. In this case, assuming that

77
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Figure 6.1: AMIMOmultiple access channel network.

interference by all other devices is treated as additive noise at the receiver, the achievable

transmission rate of each device is given by the Shannon-Telatar expression [144]:

uk(Q) = log det (I +∑ℓ HℓQℓH
†
ℓ) − log det (W−k) , (6.5)

whereQ = (Q1 , . . . ,QK) and

W−k = I +∑ℓ≠k HℓQℓH
†
ℓ (6.6)

represents the multi-user interference (MUI) covariance matrix of the k-th device. We

will thus say that a transmit profileQ∗ = (Q∗1 , . . . ,Q∗K) is at Nash equilibrium when no

device can unilaterally improve his individual achievable rate uk , i.e.

uk(Q∗) ≥ uk(Qk ;Q
∗
−k) for allQk ∈Qk , k ∈ K, (6.7)

where (Qk ;Q
∗
−k) is shorthand for (Q∗1 , . . . ,Qk , . . . ,Q

∗
K) and

Qk = {Qk ∈ CMk×Mk ∶ Qk ≽ 0, tr(Qk) ≤ Pk} (6.8)

denotes the set of feasible signal covariance matrices for the k-th device.

Dually to the above, if the receiver employs successive interference cancellation toThroughput
maximization decode the received messages, the network’s achievable sum rate will be [152]:

R(Q) = log det (I +∑k HkQkH
†

k) . (6.9)

In this way, we obtain the sum rate maximization problem:

maximize R(Q),
subject to Qk ∈Qk , k = 1, . . . ,K .

(RM)

As can be easily checked, the sum rate function (6.9) is a potential function for the game

(6.5) in the sense that

uk(Qk ;Q−k) − uk(Q′k ;Q−k) = R(Qk ;Q−k) − R(Q′k ;Q−k). (6.10)

Hence, with R concave, it follows that the solutions of theNash equilibriumproblem (6.7)

coincide with the solutions of (RM); put differently, optimizing the network’s achievable

sum rate (6.9) under successive interference cancellation is equivalent to reaching a

Nash equilibrium with respect to the users’ individual achievable rates (6.5) under. For
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concreteness, we will focus throughout on the sum rate maximization problem (RM);

however, owing to the above observation, the equilibrium problem (6.7) can be handled

in a similar manner.

6.2 matrix exponential learning

The sum rate maximization problem (RM) is traditionally solved by water-filling (WF) Water-filling
methods [38], either iterative [133, 152] or simultaneous [132]. More precisely, transmitters

are typically assumed to have perfect knowledge of the channel matrices Hk and the

aggregate signal-plus-noise covariance matrix

W = E[yy†] = I +∑ℓ HℓQℓH
†
ℓ , (6.11)

which is in turn used to calculate the MUI covariance matricesW−k =W −HkQkH
†

k

and “water-fill” the effective channel matrices H̃k =W−1/2−k Hk at the transmitter [152]. At

a multi-user level, this water-filling process could take place either iteratively (with users

updating their covariance matrices in a round robin fashion) [152] or simultaneously

(with all users updating at once) [132]. The former (iterative) scheme converges always

(but slowly for large numbers of users) [152], whereas the latter (simultaneous) algorithm

is much faster [132] but it may fail to converge, even in simple, 2-user parallel multiple

access channels [99].

6.2.1 The matrix exponential learning algorithm

Instead of relying on fixed-point methods, we will take an approach based on dual Matrix exponential
learningaveraging: specifically, we will track the direction of steepest ascent of the system’s sum

rate in a dual, unconstrained space, and thenmap the result back to the problem’s feasible

space via matrix exponentiation. Formally, assuming for the moment perfect feedback,

we will consider the matrix exponential learning scheme:

Yk ,t+1 = Yk ,t + γtVk(Qt),

Qk ,t+1 = Pk
exp(Yk ,t+1)

tr[exp(Yk ,t+1)]
,

(MXL)

where:

1. t = 1, 2, . . . denotes the algorithm’s iteration counter.

2. Vk ≡ Vk(Q) denotes the (matrix) derivative of the system’s sum rate with respect

to each user’s covariance matrix, viz.

Vk(Q) ≡ ∇QkR(Q) = ∇Qkuk(Q) = H†

kW
−1Hk . (6.12)

3. Yk is a gradient aggregation matrix with a role similar to (DA).1

4. γt is a decreasing step-size sequence.

Intuitively, (MXL) assigns more power to the spatial eigendirections that perform

well while the variable step-size γt keeps the eigenvalues ofQt from approaching zero

too fast. Of course, to employ the recursion (MXL), each user k ∈ K needs to know their

1 Specifically, its role is to reinforce the spatial directions that lead to higher sum rates by increasing the

corresponding eigenvalues ofQk .
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individual gradient matrix Vk . In turn, this matrix requires knowledge ofHk and the

received signal precision matrix

P =W−1 = (I +∑k HkQkH
†

k)
−1
. (6.13)

Of these two matrices (Hk and P), the former can be estimated by pilot signals, andGradient estimation
is assumed known at the receiver [72]. As for the latter, since the channel is assumed

Gaussian, P can be estimated by means of the bias-adjusted estimator

P̂ = S − N − 1
S

Ŵ−1 , (6.14)

where Ŵ = S−1∑S
s=1 ysy

†
s is an (unbiased) estimate for the received signal covariance

matrixW [5]. In more detail, if each transmitter takes S independent measurements

Ĥk ,1 , . . . , Ĥk ,S of their channel matrix (e.g., via independent reverse pilot sampling), an

unbiased estimate for Vk is given by the expression:

V̂k =
1

S(S − 1)∑s≠s′ Ĥ
†

k ,sP̂Ĥk ,s′ , (6.15)

where P̂ is the latest estimate of (6.14) ofW−1 that was broadcast by the receiver. Indeed,
given that the sampled channel matrix measurements Ĥk ,s are assumed stochastically

independent, we readily obtain:

E[V̂k] =
1

S(S − 1)∑s≠s′ E [Ĥ
†

k ,sP̂Ĥk ,s′] = H†

kW
−1Hk , (6.16)

i.e., (6.15) constitutes an unbiased estimator of V.

The construction above provides an estimator V̂ with E[V̂] = V. As for the variance
of V̂, (6.15) can also be used to derive an expression for Var(V̂) in terms of the moments

of P̂ and Ĥ. Since the system input and noise are assumed Gaussian, the former are

all finite (and Gaussian-distributed), implying in turn that V̂ satisfies the requirements

(2.24) for an unbiased stochastic first-order oracle with uniformly bounded variance.

6.2.2 Performance guarantees

We are now in a position to state our main result for (MXL):

Theorem 6.1 (Mertikopoulos and Moustakas, 2016). Assume that (MXL) is run withConvergence of MXL
nonincreasing step sizes γt such that∑t γ2t < ∑t γt =∞ and gradient feedback of the form
(6.15). Then, Qt converges to the solution setQ of the sum rate maximization problem
(RM) with probability 1.

Moreover, if Q̄t = ∑t
s=1 γsQs/∑t

s=1 γs denotes the ergodic average of Qt , we have:

E[R(Q̄t)] ≤ Rmax − εt (6.17)

and

P(Rmax − R(Q̄t) ≥ α) ≤ exp(−
θ2t α2

8K2∑t
s=1 γ2s σ 2

s
) (6.18)

where

εt =
∑K

k=1 logMk + 1

2
L2∑t

s=1 γ2s
∑t

s=1 γs
, (6.19)

θ t = ∑t
s=1 γs , and L2 is a positive constant depending only on the users’ maximum powers

and their channel gain matrices.
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In terms of per iteration complexity, we should note that each iteration of (MXL) Per iteration
complexity of MXLis polynomial in the number of transmit and receive antennas (for calculations at the

transmitter and receiver side respectively). Specifically, the complexity of the required

matrix inversion and exponentiation steps isO(Nω) andO(Mω
k ) respectively, where

the exponent ω can be taken as low as 2.373 if the processing units employ fast Cop-

persmith–Winograd matrix multiplication methods [47].The Hermitian structure ofW

can be exploited to reduce the computational cost of each iteration even further but we

do not address such issues: In practice, the number of transmit and receive antennas

are physically constrained by the size of the wireless array, so these operations are quite

light.

By comparison, the computational bottleneck of each iteration in distributed water-

filling is the calculation of the effective channel matrix H̃k =W−1/2k Hk of each user and,

subsequently, sorting the singular values of H̃k . The computational complexity (per user)

of these operations isO(max{Mk ,N}ω) andO(Mk logMk) respectively, leading to an
overall complexity ofO(max{Mk ,N}ω). This is the same complexity of water-filling

methods, so (MXL) is no worse off in this regard either.

Finally, we should note that the bounds (6.18) represent the probability of observing Outage probabilities
sum rates far below the channel’s capacity so they can be interpreted as a measure of the

system’s outage probability. In this context, the tail behavior of (6.18) shows that (MXL)

hardens considerably around its deterministic limit: even though measurement errors

can become arbitrarily large, the probability of observing sum rates much lower than

what is obtainable with perfect gradient measurements decays very fast. In fact, this rate

of decay is exponential: for large t, the factor θ−2t ∑t
s=1 γ2s which controls the width of

non-negligible large deviations in (6.18) is of orderO(1/n) for step-size sequences of
the form γt ∝ 1/tb , b ∈ (0, 1/2), and of orderO(t2b−2) for b ∈ (1/2, 1).

6.3 numerical experiments in mimo networks

To assess the performance of (MXL) in practical scenarios, we present below a series of

numerical experiments. First, in Fig. 6.2, we investigate the convergence speed of (MXL) Water-filling
vs. MXLas a function of the number of wireless transmitters and transmit/receive antennas,

using state-of-the-art water-filling (WF) methods as a benchmark. For concreteness,

we compared the evolution of (MXL) to that of iterative and simultaneous water-filling

for a system consisting of a base MIMO terminal with N = 16 receive antennas and

K = {20, 50} wireless users. We then plotted the users’ Shannon rate (6.9) at each

iteration; for comparison, we also plotted the channel’s sum capacity and the users’ sum

rate under uniform power allocation.

As can be seen in Fig. 6.2, the MXL algorithm attains the system’s sum capacity

within a few iterations (essentially within a single iteration for K = 50 users).2 This

convergence behavior represents a marked improvement over traditional WF methods,

even in moderately-sized systems with K = 20 users. First, iterative water-filling is much

slower than (MXL); second, simultaneous water-filling may fail to converge altogether

due to “ping-pong” effects that occur when the users change transmit eigenvalues at the

same time. By contrast, (MXL) converges very quickly, even for large numbers of users

and/or antennas per user.

The scalability and robustness of (MXL) is further examined in Fig. 6.3 where we plot Scalability and
robustnessthe number of iterations required for users to attain 99% of the system’s sum capacity.

More precisely, for each value of K and N in Fig. 6.3, we ran the MXL algorithm for 100

network instantiations (with simulation parameters as before) and we plotted the average

number of iterations required to attain 99% of the network’s capacity. This process was

2 Alternatively, in the game-theoretic context of (6.7), this implies that the system’s users reach a unilaterally

stable Nash equilibrium.
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Figure 6.2: Comparison of matrix exponential learning (MXL) to water-filling (WF) methods.

The iterative water-filling algorithm converges slowly because only one user updates

per cycle; the simultaneous variant (SWF) is much faster (because all users updates

simultaneously), but it may fail to converge due to the appearance of best-response

cycles in the update process. By contrast, (MXL) converges within a few iterations,

even for large K.
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(b) Learning with imperfect measurements

Figure 6.3: Scalability of (MXL) under perfect and imperfect feedback (Figs. 6.3a and 6.3b re-

spectively). The convergence threshold was set to 99% of the system’s sum capacity

and the number of iterations required for convergence was averaged over 100 realiza-

tions. In Fig. 6.3a, we also plotted the corresponding data for the iterative water-filling

algorithm (dashed lines with open markers).

repeated for both perfect and imperfect feedback (with a 20% relative error level), and

the results were plotted in Figures 6.3a and 6.3b respectively. For comparison purposes,

we also plotted the number of iterations required for the convergence of iterative water-

filling (IWF) in the case of perfect feedback; since simultaneous water-filling (SWF) often

fails to converge, it was not included in our benchmark considerations (and likewise for

IWF under imperfect feedback).

As can be seen in Fig. 6.3, (MXL) scales very well with the number of users (and/or an-

ntenas per user), achieving the system’s sum capacity within (roughly) the same number

of iterations. In fact, (MXL) is faster in larger systems because users can employ a more

aggressive step-size policy.3 Of course, in the case of imperfect feedback (Fig. 6.3b), users

have to be less aggressive because erroneous observations can perturb the algorithm’s

performance. For this reason, (MXL) with imperfect feedback converges more slowly,

but it still attains the system’s sum capacity within roughly the same number of iterations,

independently of the number of users and/or antennas per user in the system.

The (per user) computational cost of each iteration of (MXL) is examined in Fig. 6.4.Per iteration complexity
and wall-clock time Specifically, in Fig. 6.4, we focused on a system with N ∈ [4, 64] receive antennas and

K = 50 transmitters, each with a number of transmit antennas drawn randomly between

2 and N/2. We then plotted the actual CPU time required to perform one iteration of

3 In large systems, the optimal signal covariance profile Q∗ has many zero eigenvalues. As a result, using a very

large step-size allows users to approachQ∗ within very few iterations, with no danger of oscillations.
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Figure 6.4: Average computation time per user and per iteration. Each iteration of (MXL) exhibits

the same complexity behavior as water-filling methods.

(MXL) (per user) on a typical mid-range commercial laptop, averaging over 100 system

realizations. For comparison, we also plotted the corresponding computation times for

iterative and simultaneous water-filling (always per user and per iteration). As can be

seen, the computational cost of (MXL) lies between that of IWF and SWF and is quite

low, even for large number of antennas per user. Specifically, the computational time

required to perform one iteration of (MXL) is well below the typical frame duration

(δ = 5ms), even for several tens of transmit/receive antennas.





7
PERSPECTIVES

A
natural refinement of the questions treated so far would be to a) characterize the
classes of games that are “learnable”; and b) to provide efficient learning algorithms

that remain convergent in the broadest possible class of games (e.g., beyond mono-

tone/coherent minds). This general framework opens up several questions for future

research.

towards a hodge theory of games . The Hodge decomposition theorem is a

fundamental result in differential geometry which, in a greatly simplified form, states

that any sufficiently smooth and rapidly decaying vector field can be decomposed as

the sum of an irrotational (i.e., curl-free) and a solenoidal (i.e., divergence-free) vector

field. This decomposition is of great importance because dynamical systems that are

solenoidal are typically recurrent (i.e., they exhibit cycles) while dynamical systems that

are irrotational are typically convergent. This dichotomy naturally invites a comparison

with the behavior of online learning in games (convergence in “stable” games, and cycles

in zero-sum games).

In a recent paper, Candogan et al. [34] derived a geometric categorization of finite

games based on the Hodge decomposition theorem for graphs (but did not provide

any insights about the behavior of learning based on this decomposition). The first

question that arises in this context is whether this decomposition can be used to better

understand evolutionary/learning dynamics in finite games; moreover, it is also natural to

askwhether aHodge-like decomposition can be found for general gameswith continuous

action sets (which are of crucial importance in artificial intelligence and its applications).

Specifically, by mapping a game to a canonical 1-form which admits a Hodge de-

composition into an exact (potential), a harmonic, and a co-exact component, concrete

questions that arise are a) whether the decomposition of Candogan et al. [34] can provide

the basis for a general Hodge theory of games; b) what is the role played by the choice of

geometry (Riemannian metric) in determining the components of the Hodge decom-

position; and c) whether the Hodge components are always consistent with a class of

associated learning algorithhms. For instance, it is well known that the replicator dynam-

ics can be seen as a form of Shahshahani gradient descent: could a Shahshahani–Hodge

decomposition provide different insights for learning in games?

the role of memory in game-theoretic learning . Depending on how

players aggregate past observations (i.e., whether they are treating them on an equal

basis or if they discount past observations in favor of newer ones), the outcome of a

learning process could vary dramatically. Quite surprisingly, preliminary results show

that “nostalgic” players who assign more weight to past events may exhibit very strong

rationality properties, such as the elimination of weakly dominated strategies (at least

when the game does not change) [82]. Such phenomena are rather counter-intuitive, so

an important open question is to develop a unified framework for the study of different

valuations of past events, and to chart the properties of online learning in this context.
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accelerated learning in games . One of the most widely lauded advances in

optimization theory in the 80’s was Nesterov’s “fast gradient” algorithm – also known as

accelerated gradient descent. This technique achieves the fastest possible convergence

rate for convex problems with smooth objectives (i.e., with a Lipschitz gradient), but its

performance in a game-theoretic setting is completely unknown. Motivated by recent

results for extra-gradient techniques in games [102], a natural question that arises is the

study of the no-regret and convergence properties of Nesterov’s method in games and

online variational inequalities, with a view towards providing faster regret minimization

and equilibrium convergence rates in games.

multi-agent learning in non-stationary environments . Game-

theoretic learning has focused almost exclusively on the case where the game itself

is static: each player’s individual payoff function might vary as a function of the other

players’ actions, but the mechanism underlying the players’ interactions – i.e., the actual

game – does not change with time. However, since real-world scenarios are rarely sta-

tionary, a key issue that arises is to truly mix the non-stationary framework of online

optimization to the multi-agent setting of normal form games.

Specifically, focusing on games that evolve over time, if all players follow a learning

policy that leads to no dynamic regret, does the induced sequence of play remain close

to the Nash set of the game as it evolves over time? A promising entry point to this

question is in the context of slowly-varying games (i.e., sequences of normal form games

whose total variation grows sublinearly in time), games that admit a limit, and other

relevant classes of time-varying games.

convergence in non-monotone saddle-point problems . In a more

practical setting, the adversarial match-up of deep learning mechanisms has led to

extraordinary advances in the field of artificial intelligence, not the least of which is the

ability to pass a specific version of Turing’s test (the automatic generation of images that

can fool a human observer). However, despite the highly promising results they provide,

our theoretical understanding of GANs is still at an embryonic stage: the research

community has a partial idea of “what” works in practice, but not the “why” or the

“how”.

Typically, deep learning involves non-convex loss functions for which finding even

local minima is NP-hard; nevertheless, elementary techniques such as SGD (and other

first-order methods) seem to work fairly well in practice. For this class of problems,

recent results have started providing useful theoretical insights, but several key ques-

tions remain: Under which conditions is it reasonable to expect concrete convergence

guarantees? Are the existing optimization algorithms guaranteed to avoid limit cycles

and/or other spurious critical sets? If not, what should they be replaced with?

To provide concrete answers to the above questions, it would be interesting to employ

methodologies and techniques from the theory of dynamical systems and differential

geometry. Particularly promising would be the use of Morse theory and center manifold

theorems to examine whether it is possible for a given algorithm to admit limit points

– or, more generally, limit sets – that are not saddle points of the problem at hand. As

such, a second direction to examine would be to study convergence under local versions

of the variational coherence property of [102]: this would allow a better understanding

of the successes and failures of first-order methods in adversarial learning models, and

would provide a principled methodology for adversarial neural network training.

particle gans . In tandem to the above, an open question is whether an evolution-

ary approach to GAN training (e.g., via particle swarm techniques) can bring practical

benefits. Specifically, by initializing the training weights of a neural net at randomly

selected points, it is possible to generate a “training swarm” that can be modeled as a
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Figure 7.1: GAN training based on stochastic gradient descent in multi-modal saddle-point prob-

lems (left: a problem with two modes; right: a four-mode problem). Each surface

plot was generated by drawing 1000 initializations of a GAN, and plotting a histogram

of all points visited; the wireframe represents a theoretical estimate based on the

Fokker-Planck equation, indicating a remarkably close agreement between theory and

practice.

Langevin dynamical system (not unlike Einstein’s original study of Brownian motion).

The stationary state of this process (corresponding to the average “trained” network)

can be obtained by solving the corresponding Fokker-Planck equation.

Of course, solving a Fokker-Planck equation is a task of considerable difficulty in itself;

furthermore, despite the extensive literature surrounding the Fokker-Planck equation,

very few works have treated the case where the underlying stochastic process does

not admit a potential. Since GANs are de facto multi-agent problems (as opposed to

single-agent optimization problems), this requires a completely novel approach, probably

foregoing the hope of obtaining a closed-form global solution.

Instead, it would be more natural to focus on the invariant measure of the process near

the problem’s solution modes, similarly to our analysis in Section 3.4. This would allow

the characterization of adversarial training methods near local saddle-points and would

provide at least some theoretical insights on the behavior of GANs in realistic models.

As shown in Fig. 7.1, experiments in simple GANs show that the invariant measure

of the Fokker-Planck distribution has remarkable predictive power for the end-state

of the trained network. If this can be proved rigorously, this would be a considerable

contribution in our understanding of GANs.
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